Skip to main content

Perspectives of Using Artificial Intelligence in Building Fire Safety

  • 456 Accesses

Abstract

Over the past decade, big data and artificial intelligence (AI) enable new smart techniques in the building and construction area. The applications of AI in fire detection, risk assessment, and fire forecast are emerging. This chapter provides a roadmap for AI-based building fire safety engineering application by comparing it with the history of CFD fire modelling. Guidelines for constructing a reliable fire database with both experimental and numerical data are introduced. The AI algorithms having a great potential to detect and forecast fire scenarios are discussed, and the latest research on exploring and developing intelligent firefighting systems are reviewed. Finally, three new concepts of applying AI in building fire safety are proposed, (1) the AI-based fire engineering design to improve the structure fire safety, (2) the building fire Digital Twin to monitoring the fire risk and development in real time, and (3) the Super Real-time Forecast (SuRF) of the fire evolution.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-98685-8_6
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-98685-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9

References

  1. The Geneva Association Staff, World Fire Statistics, The Geneva Association, 2014.

    Google Scholar 

  2. J. HALL, Calculating the total cost of fire in the United States, Fire Journal (Boston, MA). 83 (1989) 69–72.

    Google Scholar 

  3. C. Grant, A. Hamins, N. Bryner, A. Jones, G. Koepke, Research Roadmap for Smart Fire Fighting, NIST Special Publication 1191. (2015). https://doi.org/10.6028/NIST.SP.1191.

  4. A. Cowlard, W. Jahn, C. Abecassis-Empis, G. Rein, J.L. Torero, Sensor assisted fire fighting, Fire Technology. 46 (2010) 719–741. https://doi.org/10.1007/s10694-008-0069-1.

  5. Y. Cao, F. Yang, Q. Tang, X. Lu, An attention enhanced bidirectional LSTM for early forest fire smoke recognition, IEEE Access. 7 (2019) 154732–154742. https://doi.org/10.1109/ACCESS.2019.2946712.

  6. J. Choi, J.Y. Choi, An integrated framework for 24-hours fire detection, in: Lecture Notes in Computer Science, 2016: pp. 463–479. https://doi.org/10.1007/978-3-319-48881-3_32.

  7. N. Elhami-Khorasani, J.G. Salado Castillo, T. Gernay, A Digitized Fuel Load Surveying Methodology Using Machine Vision, Fire Technology. 57 (2021) 207–232. https://doi.org/10.1007/s10694-020-00989-9.

  8. M.Z. Naser, H. Salehi, Machine Learning-Driven Assessment of Fire-Induced Concrete Spalling of Columns, ACI Materials Journal. 117 (2020) 7–16.

    Google Scholar 

  9. M.Z. Naser, A. Seitllari, Concrete under fire: an assessment through intelligent pattern recognition, Engineering with Computers. 36 (2020) 1915–1928.

    Google Scholar 

  10. M.Z. Naser, Mechanistically Informed Machine Learning and Artificial Intelligence in Fire Engineering and Sciences, Fire Technology. (2021). https://doi.org/10.1007/s10694-020-01069-8.

  11. J.L. Hodges, B.Y. Lattimer, K.D. Luxbacher, Compartment fire predictions using transpose convolutional neural networks, Fire Safety Journal. 108 (2019) 102854. https://doi.org/10.1016/j.firesaf.2019.102854.

  12. W.C. Tam, E.Y. Fu, R. Peacock, P. Reneke, J. Wang, J. Li, T. Cleary, Generating Synthetic Sensor Data to Facilitate Machine Learning Paradigm for Prediction of Building Fire Hazard, Fire Technology. (2020). https://doi.org/10.1007/s10694-020-01022-9.

  13. A. Dexters, R.R. Leisted, R. Van Coile, S. Welch, G. Jomaas, Testing for knowledge: Application of machine learning techniques for prediction of flashover in a 1/5 scale ISO 13784-1 enclosure, Fire and Materials. (2020) 1–12. https://doi.org/10.1002/fam.2876.

  14. S. Mahdevari, S.R. Torabi, Prediction of tunnel convergence using Artificial Neural Networks, Tunnelling and Underground Space Technology. 28 (2012) 218–228. https://doi.org/10.1016/j.tust.2011.11.002.

  15. E.W.M. Lee, R.K.K. Yuen, S.M. Lo, K.C. Lam, G.H. Yeoh, A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire, Fire Safety Journal. 39 (2004) 67–87. https://doi.org/10.1016/S0379-7112(03)00092-4.

  16. R.K.K. Yuen, E.W.M. Lee, S.M. Lo, G.H. Yeoh, Prediction of temperature and velocity profiles in a single compartment fire by an improved neural network analysis, Fire Safety Journal. 41 (2006) 478–485. https://doi.org/10.1016/j.firesaf.2006.03.003.

  17. J. Wang, C.W. Tam, Y. Jia, R. Peacock, P. Reneke, E. Yujun, T. Cleary, P-Flash – A machine learning-based model for flashover prediction using recovered temperature data, Fire Safety Journal. 122 (2021) 103341. https://doi.org/10.1016/j.firesaf.2021.103341.

  18. X. Wu, Y. Park, A. Li, X. Huang, F. Xiao, A. Usmani, Smart Detection of Fire Source in Tunnel Based on the Numerical Database and Artificial Intelligence, Fire Technology. 57 (2021) 657–682. https://doi.org/10.1007/s10694-020-00985-z.

  19. X. Zhang, X. Wu, Y. Park, T. Zhang, X. Huang, F. Xiao, A. Usmani, Perspectives of big experimental database and artificial intelligence in tunnel fire research, Tunnelling and Underground Space Technology. 108 (2021) 103691. https://doi.org/10.1016/j.tust.2020.103691.

  20. X. Wu, X. Zhang, X. Huang, F. Xiao, A. Usmani, A real-time forecast of tunnel fire based on numerical database and artificial intelligence, Building Simulation. 15 (2022) 511–524. https://doi.org/10.1007/s12273-021-0775-x.

  21. K.B. Lee, H.S. Shin, An Application of a Deep Learning Algorithm for Automatic Detection of Unexpected Accidents under Bad CCTV Monitoring Conditions in Tunnels, in: Proceedings - 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications, Deep-ML 2019, 2019. https://doi.org/10.1109/Deep-ML.2019.00010.

  22. S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Peason Education Limited, Malaysia, 2016.

    Google Scholar 

  23. A. Jaafari, E.K. Zenner, M. Panahi, H. Shahabi, Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability, Agricultural and Forest Meteorology. 266–267 (2019) 198–207. https://doi.org/10.1016/j.agrformet.2018.12.015.

  24. D. Drysdale, An Introduction to Fire Dynamics, 3rd ed., John Wiley & Sons, Ltd, Chichester, UK, 2011. https://doi.org/10.1002/9781119975465.

  25. S. Shyam-Sunder, R.G. Gann, W.L. Grosshandler, H.S. Lew, R.W. Bukowski, F. Sadek, F.W. Gayle, J.L. Gross, T.P. McAllister, J.D. Averill, Federal building and fire safety investigation of the world trade center disaster: final report of the national construction safety team on the collapses of the world trade center towers (NIST NCSTAR 1), (2005).

    Google Scholar 

  26. M. Chi, A. Plaza, J.A. Benediktsson, Z. Sun, J. Shen, Y. Zhu, Big Data for Remote Sensing: Challenges and Opportunities, Proceedings of the IEEE. 104 (2016) 2207–2219. https://doi.org/10.1109/JPROC.2016.2598228.

  27. A. Brown, M. Bruns, M. Gollner, J. Hewson, G. Maragkos, A. Marshall, R. McDermott, B. Merci, T. Rogaume, S. Stoliarov, J. Torero, A. Trouvé, Y. Wang, E. Weckman, Proceedings of the first workshop organized by the IAFSS Working Group on Measurement and Computation of Fire Phenomena (MaCFP), Fire Safety Journal. 101 (2018) 1–17. https://doi.org/10.1016/j.firesaf.2018.08.009.

  28. R.S. Allison, J.M. Johnston, G. Craig, S. Jennings, Airborne optical and thermal remote sensing for wildfire detection and monitoring, Sensors (Switzerland). 16 (2016). https://doi.org/10.3390/s16081310.

  29. S.E. Caton, R.S.P. Hakes, D.J. Gorham, A. Zhou, M.J. Gollner, Review of Pathways for Building Fire Spread in the Wildland Urban Interface Part I: Exposure Conditions, Fire Technology. (2016) 1–45. https://doi.org/10.1007/s10694-016-0589-z.

  30. A. Cicione, R.S. Walls, C. Engineering, Full-Scale Informal Settlement Dwelling Fire Experiments and Development, Springer US, 2020. https://doi.org/10.1007/s10694-019-00894-w.

  31. K. Mcgrattan, R. Mcdermott, Fire Dynamics Simulator User ’ s Guide (FDS Version 6.3.0), (2015).

    Google Scholar 

  32. K. Muhammad, J. Ahmad, I. Mehmood, S. Rho, S.W. Baik, Convolutional Neural Networks Based Fire Detection in Surveillance Videos, IEEE Access. 6 (2018) 18174–18183. https://doi.org/10.1109/ACCESS.2018.2812835.

  33. N.K. Kim, K.M. Jeon, H.K. Kim, Convolutional recurrent neural network-based event detection in tunnels using multiple microphones, Sensors (Switzerland). 19 (2019). https://doi.org/10.3390/s19122695.

  34. L. Han, S. Potter, G. Beckett, G. Pringle, S. Welch, S.H. Koo, G. Wickler, A. Usmani, J.L. Torero, A. Tate, FireGrid: An e-infrastructure for next-generation emergency response support, Journal of Parallel and Distributed Computing. 70 (2010) 1128–1141. https://doi.org/10.1016/j.jpdc.2010.06.005.

  35. Y. Pei, F. Gan, Research on data fusion system of fire detection based on neural-network, Proceedings of the 2009 Pacific-Asia Conference on Circuits, Communications and System, PACCS 2009. (2009) 665–668. https://doi.org/10.1109/PACCS.2009.134.

  36. Y. Yao, J. Yang, C. Huang, W. Zhu, Fire monitoring system based on multi-sensor information fusion, 2010 2nd International Symposium on Information Engineering and Electronic Commerce, IEEC 2010. (2010) 448–450. https://doi.org/10.1109/IEEC.2010.5533209.

  37. C.J. Xue, The road tunnel fire detection of multi-parameters based on BP neural network, CAR 2010 - 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics. 3 (2010) 246–249. https://doi.org/10.1109/CAR.2010.5456677.

  38. F. Cui, Deployment and integration of smart sensors with IoT devices detecting fire disasters in huge forest environment, Computer Communications. 150 (2020) 818–827. https://doi.org/10.1016/j.comcom.2019.11.051.

  39. D. Lee, M. Lim, H. Park, Y. Kang, J.S. Park, G.J. Jang, J.H. Kim, Long short-term memory recurrent neural network-based acoustic model using connectionist temporal classification on a large-scale training corpus, China Communications. 14 (2017) 23–31. https://doi.org/10.1109/CC.2017.8068761.

  40. Y. Bengio, P. Simard, P. Frasconi, Learning Long-Term Dependencies with Gradient Descent is Difficult, IEEE Transactions on Neural Networks. 5 (1994) 157–166. https://doi.org/10.1109/72.279181.

  41. S. Hochreiter, Long Short-Term Memory, 1780 (1997) 1735–1780.

    Google Scholar 

  42. K. Greff, R.K. Srivastava, J. Koutnik, B.R. Steunebrink, J. Schmidhuber, LSTM: A Search Space Odyssey, IEEE Transactions on Neural Networks and Learning Systems. 28 (2017) 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924.

  43. A.H. Buchanan, Implementation of performance-based fire codes, Fire Safety Journal. 32 (1999) 377–383. https://doi.org/10.1016/S0379-7112(99)00002-8.

  44. M. Kohno, T. Okazaki, Performance Based Fire Engineering in Japan, International Journal of High-Rise Buildings. 2 (2013) 23–30. https://doi.org/10.21022/IJHRB.2013.2.1.023.

  45. S.C. Tsui, Performance-Based Fire Safety Design in Hong Kong, International Journal on Engineering Performance-Based Fire Codes. 6 (2004) 223–229.

    Google Scholar 

  46. V. Beck, Performance-based Fire Engineering Design And Its Application In Australia, Fire Safety Science. 5 (1997) 23–40. https://doi.org/10.3801/iafss.fss.5-23.

  47. D.L. Zhao, J. Li, Y. Zhu, L. Zou, The application of a two-dimensional cellular automata random model to the performance-based design of building exit, Building and Environment. (2008). https://doi.org/10.1016/j.buildenv.2007.01.011.

  48. Q. Zhang, M. Liu, C. Wu, G. Zhao, A stranded-crowd model (SCM) for performance-based design of stadium egress, Building and Environment. (2007). https://doi.org/10.1016/j.buildenv.2006.06.016.

  49. L.C. Su, X. Wu, X. Zhang, X. Huang, Smart performance-based design for building fire safety: Prediction of smoke motion via AI, Journal of Building Engineering. 43 (2021) 102529. https://doi.org/10.1016/j.jobe.2021.102529.

  50. C.M. Fleischmann, Is prescription the future of performance-based design?, Fire Safety Science. (2011) 77–94. https://doi.org/10.3801/IAFSS.FSS.10-77.

  51. Y. Zeng, X. Zhang, L. Su, X. Wu, X. Huang, Artificial Intelligence Software (IFETool) for Building Fire Safety Design Analysis, Automation in Construction (under review). (2022).

    Google Scholar 

  52. F. Tao, H. Zhang, A. Liu, A.Y.C. Nee, Digital Twin in Industry: State-of-the-Art, IEEE Transactions on Industrial Informatics. 15 (2019) 2405–2415. https://doi.org/10.1109/TII.2018.2873186.

  53. X. Wu, X. Wu, X. Zhang, Y. Jiang, X. Huang, G.G.Q. Huang, A. Usmani, An intelligent tunnel firefighting system and small-scale demonstration. 120 (2022) 104301.

    Google Scholar 

  54. J. Torero, Scaling-Up Fire, Proceedings of the Combustion Institute. 34 (2013) 99–124.

    Google Scholar 

  55. T. Palmer, The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years, Quarterly Journal of the Royal Meteorological Society. (2018).

    Google Scholar 

  56. S.H. Koo, J. Fraser-Mitchell, S. Welch, Sensor-steered fire simulation, Fire Safety Journal. 45 (2010) 193–205. https://doi.org/10.1016/j.firesaf.2010.02.003.

  57. F. Zhou, B. Young, Web crippling behaviour of cold-formed duplex stainless steel tubular sections at elevated temperatures, Engineering Structures. 57 (2013) 51–62. https://doi.org/10.1016/j.engstruct.2013.09.008.

  58. Z. Karevan, J.A.K. Suykens, Spatio-temporal Stacked LSTM for Temperature Prediction in Weather Forecasting, ArXiv Preprint ArXiv:181106341. (2018).

    Google Scholar 

  59. A. Russo, A.O. Soares, Hybrid model for urban air pollution forecasting: A stochastic spatio-temporal approach, Mathematical Geosciences. 46 (2014) 75–93.

    Google Scholar 

  60. S. Wang, Intelligent buildings and building automation, Routledge, 2009.

    Google Scholar 

  61. T.S. Rappaport, Wireless Communications--Principles and Practice, (The Book End), Microwave Journal. 45 (2002) 128–129.

    Google Scholar 

  62. H.A. Omar, K. Abboud, N. Cheng, K.R. Malekshan, A.T. Gamage, W. Zhuang, A survey on high efficiency wireless local area networks: Next generation WiFi, IEEE Communications Surveys & Tutorials. 18 (2016) 2315–2344.

    Google Scholar 

  63. N.V.R. Kumar, C. Bhuvana, S. Anushya, Comparison of ZigBee and Bluetooth wireless technologies-survey, in: 2017 International Conference on Information Communication and Embedded Systems (ICICES), IEEE, 2017: pp. 1–4.

    Google Scholar 

  64. M.R. Souryal, J. Geissbuehler, L.E. Miller, N. Moayeri, Real-time deployment of multihop relays for range extension, in: Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, ACM, 2007: pp. 85–98.

    Google Scholar 

  65. H. Liu, J. Li, Z. Xie, S. Lin, K. Whitehouse, J.A. Stankovic, D. Siu, Automatic and robust breadcrumb system deployment for indoor firefighter applications, In: Proceedings of the 8th international conference on Mobile systems, applications, and services., Pp. (2010) 21–34.

    Google Scholar 

  66. H. Liu, Z. Xie, J. Li, S. Lin, D.J. Siu, P. Hui, K. Whitehouse, J.A. Stankovic, An automatic, robust, and efficient multi-user breadcrumb system for emergency response applications, IEEE Transactions on Mobile Computing. 13 (2013) 723–736.

    Google Scholar 

Download references

Acknowledgements

This work is funded by the Hong Kong Research Grants Council Theme-based Research Scheme (T22-505/19-N) and the PolyU Emerging Frontier Area (EFA) Scheme of RISUD (P0013879).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Huang, X., Wu, X., Usmani, A. (2022). Perspectives of Using Artificial Intelligence in Building Fire Safety. In: Naser, M., Corbett, G. (eds) Handbook of Cognitive and Autonomous Systems for Fire Resilient Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-98685-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98685-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98684-1

  • Online ISBN: 978-3-030-98685-8

  • eBook Packages: Computer ScienceComputer Science (R0)