Skip to main content

Biotechnology in Medicine: Fundamentals

  • Chapter
  • First Online:
Fundamentals and Advances in Medical Biotechnology

Abstract

Biotechnology is a diverse field with important implications in everyday life. It finds its use in research, medicine, agriculture, and chemical industry. Various biotechnology techniques are utilized for different purposes. Polymerase chain reaction (PCR) is used in molecular cloning, genotyping, and medical diagnostics. Molecular cloning in particular is a multiple step process involving PCR amplification of the gene of interest, restriction digestion of the vector, and the insert, ligation, screening, and sequencing. Vectors like plasmids are utilized to express the gene of interest. Amplification of plasmids involves transformation into bacteria and the expression of the gene of interest is achieved by transfection into the host cells. Real-time PCR measures gene expression at the RNA level. It is currently being used for COVID-19 screening. Site-directed mutagenesis is a technique to introduce specific mutations in DNA. It is utilized to perturb the function of a protein. Crispr-Cas9 system is a recent addition to the DNA manipulation tool kit. It finds its use in knock-out studies where guide RNA directs the Cas9 nuclease to the target gene. The system can also be utilized for knock-in studies and mutagenesis by providing a homology directed repair (HDR) template, along with Cas9 and guide, to introduce specific changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amarakoon I, Hamilton C, Mitchell S, Tennant P, Roye M (2017) Biotechnology/pharmacognosy: fundamentals, applications and strategies. Academic Press, Boston

    Google Scholar 

  2. Gupta V, Sengupta M, Prakash J, Tripathy BC (2017) Basic and applied aspects of biotechnology. Springer, New York

    Book  Google Scholar 

  3. Green MR, Sambrook J (2018) The basic polymerase chain reaction (PCR). Cold Spring Harb Protoc 2018(5). https://doi.org/10.1101/pdb.prot095117

  4. Gustafson CE, Alm RA, Trust TJ (1993) Effect of heat denaturation of target DNA on the PCR amplification. Gene 123(2):241–244. https://doi.org/10.1016/0378-1119(93)90130-u

    Article  CAS  PubMed  Google Scholar 

  5. Green MR, Sambrook J (2019) Polymerase chain reaction. Cold Spring Harb Protoc 2019(6). https://doi.org/10.1101/pdb.top095109

  6. Wallace RB, Shaffer J, Murphy RF, Bonner J, Hirose T, Itakura K (1979) Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res 6(11):3543–3557. https://doi.org/10.1093/nar/6.11.3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suggs SV, Wallace RB, Hirose T, Kawashima EH, Itakura K (1981) Use of synthetic oligonucleotides as hybridization probes: isolation of cloned cDNA sequences for human beta 2-microglobulin. Proc Natl Acad Sci U S A 78(11):6613–6617. https://doi.org/10.1073/pnas.78.11.6613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127(3):1550–1557. https://doi.org/10.1128/jb.127.3.1550-1557.1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science (New York, NY) 239(4839):487–491. https://doi.org/10.1126/science.2448875

    Article  CAS  Google Scholar 

  10. Tindall KR, Kunkel TA (1988) Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27(16):6008–6013. https://doi.org/10.1021/bi00416a027

    Article  CAS  PubMed  Google Scholar 

  11. Cline J, Braman JC, Hogrefe HH (1996) PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res 24(18):3546–3551. https://doi.org/10.1093/nar/24.18.3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3(9):1452–1456. https://doi.org/10.1038/nprot.2008.133

    Article  CAS  PubMed  Google Scholar 

  13. Danna K, Nathans D (1971) Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc Natl Acad Sci U S A 68(12):2913–2917. https://doi.org/10.1073/pnas.68.12.2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dussoix D, Arber W (1962) Host specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage lambda. J Mol Biol 5:37–49. https://doi.org/10.1016/s0022-2836(62)80059-x

    Article  CAS  PubMed  Google Scholar 

  15. Smith HO, Wilcox KW (1970) A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J Mol Biol 51(2):379–391. https://doi.org/10.1016/0022-2836(70)90149-x

    Article  CAS  PubMed  Google Scholar 

  16. Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J et al (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31(7):1805–1812. https://doi.org/10.1093/nar/gkg274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science (New York, NY) 327(5962):167–170. https://doi.org/10.1126/science.1179555

    Article  CAS  Google Scholar 

  18. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, NY) 315(5819):1709–1712. https://doi.org/10.1126/science.1138140

    Article  CAS  Google Scholar 

  19. Watson JD, Myers RM, Caudy AA, Witkowski JA (2007) Recombinant DNA: genes and genomes: a short course. Macmillan, New York

    Google Scholar 

  20. Russell P (2005) iGenetics: a molecular approach. Pearson Education, San Francisco

    Google Scholar 

  21. Brown TA (2016) Gene cloning and DNA analysis: an introduction. Wiley, Chichester

    Google Scholar 

  22. Sambrook H (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  23. Casali N, Preston AE (2003) Coli plasmid vectors: methods and applications. Springer, New York

    Book  Google Scholar 

  24. Hemsley A, Arnheim N, Toney MD, Cortopassi G, Galas DJ (1989) A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res 17(16):6545–6551. https://doi.org/10.1093/nar/17.16.6545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Costa GL, Weiner MP (1994) Polishing with T4 or Pfu polymerase increases the efficiency of cloning of PCR fragments. Nucleic Acids Res 22(12):2423. https://doi.org/10.1093/nar/22.12.2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Skryabin B, Vassilacopoulou D (1993) A simple and fast method for cloning and analyzing polymerase chain reaction products. Genet Anal Tech Appl 10(5):113–115. https://doi.org/10.1016/1050-3862(93)90034-g

    Article  CAS  PubMed  Google Scholar 

  27. Jung V, Pestka SB, Pestka S (1990) Efficient cloning of PCR generated DNA containing terminal restriction endonuclease recognition sites. Nucleic Acids Res 18(20):6156. https://doi.org/10.1093/nar/18.20.6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaufman DL, Evans GA (1990) Restriction endonuclease cleavage at the termini of PCR products. BioTechniques 9(3):304, 306

    CAS  PubMed  Google Scholar 

  29. Clark JM (1988) Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res 16(20):9677–9686. https://doi.org/10.1093/nar/16.20.9677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oliner JD, Kinzler KW, Vogelstein B (1993) In vivo cloning of PCR products in E. coli. Nucleic Acids Res 21(22):5192–5197. https://doi.org/10.1093/nar/21.22.5192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Griffiths JF, Griffiths AJ, Wessler SR, Lewontin RC, Gelbart WM, Suzuki DT et al (2005) An introduction to genetic analysis. Macmillan, New York

    Google Scholar 

  32. McGee DJ, Coker C, Harro JM, Mobley HL (2001) Bacterial genetic exchange. https://doi.org/10.1038/npg.els.0001416.

  33. Verma P (1974) Cell biology, genetics molecular biology, evolution and ecology. Chand, New Delhi

    Google Scholar 

  34. Dagert M, Ehrlich SD (1979) Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6(1):23–28. https://doi.org/10.1016/0378-1119(79)90082-9

    Article  CAS  PubMed  Google Scholar 

  35. Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53(1):159–162. https://doi.org/10.1016/0022-2836(70)90051-3

    Article  CAS  PubMed  Google Scholar 

  36. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580. https://doi.org/10.1016/s0022-2836(83)80284-8

    Article  CAS  PubMed  Google Scholar 

  37. Green M, Sambrook J (2012) Cloning and transformation with plasmid vectors. In: Molecular cloning: a laboratory manual, vol 1. Cold Spring Labortory Press, New York, pp 157–258

    Google Scholar 

  38. Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52(2):456–467. https://doi.org/10.1016/0042-6822(73)90341-3

    Article  CAS  PubMed  Google Scholar 

  39. Sharei A, Zoldan J, Adamo A, Sim WY, Cho N, Jackson E et al (2013) A vector-free microfluidic platform for intracellular delivery. Proc Natl Acad Sci U S A 110(6):2082–2087. https://doi.org/10.1073/pnas.1218705110

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tsukakoshi M, Kurata S, Nomiya Y, Ikawa Y, Kasuya T (1984) A novel method of DNA transfection by laser microbeam cell surgery. Appl Phys B 35(3):135–140

    Article  Google Scholar 

  41. Zhang G, Budker V, Wolff JA (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 10(10):1735–1737. https://doi.org/10.1089/10430349950017734

    Article  CAS  PubMed  Google Scholar 

  42. Zhang G, Vargo D, Budker V, Armstrong N, Knechtle S, Wolff JA (1997) Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers. Hum Gene Ther 8(15):1763–1772. https://doi.org/10.1089/hum.1997.8.15-1763

    Article  CAS  PubMed  Google Scholar 

  43. Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11(9):1026–1030. https://doi.org/10.1038/nbt0993-1026

    Article  CAS  PubMed  Google Scholar 

  44. Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22(1):130–131, 134–138. https://doi.org/10.2144/97221bi01

    Article  Google Scholar 

  45. Simpson DA, Feeney S, Boyle C, Stitt AW (2000) Retinal VEGF mRNA measured by SYBR green I fluorescence: a versatile approach to quantitative PCR. Mol Vis 6:178–183

    CAS  PubMed  Google Scholar 

  46. Ramos-Payán R, Aguilar-Medina M, Estrada-Parra S, González-y-Merchand J, Favila-Castillo L, Monroy-Ostria A et al (2003) Quantification of cytokine gene expression using an economical real-time polymerase chain reaction method based on SYBR® Green I. Scand J Immunol 57(5):439–445

    Article  Google Scholar 

  47. Gibson UE, Heid CA, Williams PM (1996) A novel method for real time quantitative RT-PCR. Genome Res 6(10):995–1001

    Article  CAS  Google Scholar 

  48. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308

    Article  CAS  Google Scholar 

  49. Maniatis T, Hardison RC, Lacy E, Lauer J, O’Connell C, Quon D et al (1978) The isolation of structural genes from libraries of eucaryotic DNA. Cell 15(2):687–701. https://doi.org/10.1016/0092-8674(78)90036-3

    Article  CAS  PubMed  Google Scholar 

  50. Clarke L, Carbon J (1976) A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell 9(1):91–99. https://doi.org/10.1016/0092-8674(76)90055-6

    Article  CAS  PubMed  Google Scholar 

  51. Mocharla H, Mocharla R, Hodes ME (1990) Coupled reverse transcription-polymerase chain reaction (RT-PCR) as a sensitive and rapid method for isozyme genotyping. Gene 93(2):271–275. https://doi.org/10.1016/0378-1119(90)90235-j

    Article  CAS  PubMed  Google Scholar 

  52. Murakawa GJ, Zaia JA, Spallone PA, Stephens DA, Kaplan BE, Wallace RB et al (1988) Direct detection of HIV-1 RNA from AIDS and ARC patient samples. DNA 7(4):287–295. https://doi.org/10.1089/dna.1988.7.287

    Article  CAS  PubMed  Google Scholar 

  53. Myers TW, Gelfand DH (1991) Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry 30(31):7661–7666. https://doi.org/10.1021/bi00245a001

    Article  CAS  PubMed  Google Scholar 

  54. Wang RF, Cao WW, Johnson MG (1992) A simplified, single tube, single buffer system for RNA-PCR. BioTechniques 12(5):702, 704

    CAS  PubMed  Google Scholar 

  55. Grunstein M, Hogness DS (1975) Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A 72(10):3961–3965. https://doi.org/10.1073/pnas.72.10.3961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grunstein M, Wallis J (1979) Colony hybridization. Methods Enzymol 68:379–389. https://doi.org/10.1016/0076-6879(79)68027-8

    Article  CAS  PubMed  Google Scholar 

  57. McCreery T (1997) Digoxigenin labeling. Mol Biotechnol 7(2):121–124. https://doi.org/10.1007/bf02761747

    Article  CAS  PubMed  Google Scholar 

  58. Takumi T (1997) Use of PCR for cDNA library screening. Methods Mol Biol 67:339–344. https://doi.org/10.1385/0-89603-483-6:339

    Article  CAS  PubMed  Google Scholar 

  59. Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A 85(23):8998–9002. https://doi.org/10.1073/pnas.85.23.8998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Broome S, Gilbert W (1978) Immunological screening method to detect specific translation products. Proc Natl Acad Sci U S A 75(6):2746–2749. https://doi.org/10.1073/pnas.75.6.2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Helfman DM, Feramisco JR, Fiddes JC, Thomas GP, Hughes SH (1983) Identification of clones that encode chicken tropomyosin by direct immunological screening of a cDNA expression library. Proc Natl Acad Sci U S A 80(1):31–35. https://doi.org/10.1073/pnas.80.1.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Helfman DM, Hughes SH (1987) Use of antibodies to screen cDNA expression libraries prepared in plasmid vectors. Methods Enzymol 152:451–457. https://doi.org/10.1016/0076-6879(87)52053-5

    Article  CAS  PubMed  Google Scholar 

  63. de Wet JR, Fukushima H, Dewji NN, Wilcox E, O’Brien JS, Helinski DR (1984) Chromogenic immunodetection of human serum albumin and alpha-L-fucosidase clones in a human hepatoma cDNA expression library. DNA 3(6):437–447. https://doi.org/10.1089/dna.1.1984.3.437

    Article  PubMed  Google Scholar 

  64. Mierendorf RC, Percy C, Young RA (1987) Gene isolation by screening lambda gt11 libraries with antibodies. Methods Enzymol 152:458–469. https://doi.org/10.1016/0076-6879(87)52054-7

    Article  CAS  PubMed  Google Scholar 

  65. Ratzkin B, Carbon J (1977) Functional expression of cloned yeast DNA in Escherichia coli. Proc Natl Acad Sci U S A 74(2):487–491. https://doi.org/10.1073/pnas.74.2.487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Botstein D, Fink GR (1988) Yeast: an experimental organism for modern biology. Science (New York, NY) 240(4858):1439–1443. https://doi.org/10.1126/science.3287619

    Article  CAS  Google Scholar 

  67. Wyckoff E, Hsieh TS (1988) Functional expression of a Drosophila gene in yeast: genetic complementation of DNA topoisomerase II. Proc Natl Acad Sci U S A 85(17):6272–6276. https://doi.org/10.1073/pnas.85.17.6272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Becker DM, Fikes JD, Guarente L (1991) A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. Proc Natl Acad Sci U S A 88(5):1968–1972. https://doi.org/10.1073/pnas.88.5.1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martegani E, Vanoni M, Zippel R, Coccetti P, Brambilla R, Ferrari C et al (1992) Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J 11(6):2151–2157

    Article  CAS  Google Scholar 

  70. Brady G, Funk A, Mattern J, Schütz G, Brown R (1985) Use of gene transfer and a novel cosmid rescue strategy to isolate transforming sequences. EMBO J 4(10):2583–2588

    Article  CAS  Google Scholar 

  71. Legrain P, Selig L (2000) Genome-wide protein interaction maps using two-hybrid systems. FEBS Lett 480(1):32–36. https://doi.org/10.1016/s0014-5793(00)01774-9

    Article  CAS  PubMed  Google Scholar 

  72. Zoller MJ, Smith M (1982) Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Res 10(20):6487–6500. https://doi.org/10.1093/nar/10.20.6487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ling MM, Robinson BH (1997) Approaches to DNA mutagenesis: an overview. Anal Biochem 254(2):157–178. https://doi.org/10.1006/abio.1997.2428

    Article  CAS  PubMed  Google Scholar 

  74. Gillam S, Smith M (1979) Site-specific mutagenesis using synthetic oligodeoxyribonucleotide primers: I. Optimum conditions and minimum ologodeoxyribonucleotide length. Gene 8(1):81–97. https://doi.org/10.1016/0378-1119(79)90009-x

    Article  CAS  PubMed  Google Scholar 

  75. Dalbadie-McFarland G, Cohen LW, Riggs AD, Morin C, Itakura K, Richards JH (1982) Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function. Proc Natl Acad Sci U S A 79(21):6409–6413. https://doi.org/10.1073/pnas.79.21.6409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Traboni C, Cortese R, Ciliberto G, Cesareni G (1983) A general method to select for M13 clones carrying base pair substitution mutants constructed in vitro. Nucleic Acids Res 11(12):4229–4239. https://doi.org/10.1093/nar/11.12.4229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wallace RB, Schold M, Johnson MJ, Dembek P, Itakura K (1981) Oligonucleotide directed mutagenesis of the human beta-globin gene: a general method for producing specific point mutations in cloned DNA. Nucleic Acids Res 9(15):3647–3656. https://doi.org/10.1093/nar/9.15.3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16(15):7351–7367. https://doi.org/10.1093/nar/16.15.7351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sarkar G, Sommer SS (1990) The “megaprimer” method of site-directed mutagenesis. BioTechniques 8(4):404–407

    CAS  PubMed  Google Scholar 

  80. Cariello NF, Swenberg JA, Skopek TR (1991) Fidelity of Thermococcus litoralis DNA polymerase (Vent) in PCR determined by denaturing gradient gel electrophoresis. Nucleic Acids Res 19(15):4193–4198. https://doi.org/10.1093/nar/19.15.4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lundberg KS, Shoemaker DD, Adams MW, Short JM, Sorge JA, Mathur EJ (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108(1):1–6. https://doi.org/10.1016/0378-1119(91)90480-y

    Article  CAS  PubMed  Google Scholar 

  82. Mattila P, Korpela J, Tenkanen T, Pitkänen K (1991) Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase--an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res 19(18):4967–4973. https://doi.org/10.1093/nar/19.18.4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cunningham BC, Wells JA (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science (New York, NY) 244(4908):1081–1085. https://doi.org/10.1126/science.2471267

    Article  CAS  Google Scholar 

  84. Bass SH, Mulkerrin MG, Wells JA (1991) A systematic mutational analysis of hormone-binding determinants in the human growth hormone receptor. Proc Natl Acad Sci U S A 88(10):4498–4502. https://doi.org/10.1073/pnas.88.10.4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Keohavong P, Thilly WG (1989) Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci U S A 86(23):9253–9257. https://doi.org/10.1073/pnas.86.23.9253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lin-Goerke JL, Robbins DJ, Burczak JD (1997) PCR-based random mutagenesis using manganese and reduced dNTP concentration. BioTechniques 23(3):409–412. https://doi.org/10.2144/97233bm12

    Article  CAS  PubMed  Google Scholar 

  87. Keohavong P, Ling L, Dias C, Thilly WG (1993) Predominant mutations induced by the Thermococcus litoralis, vent DNA polymerase during DNA amplification in vitro. PCR Methods Appl 2(4):288–292. https://doi.org/10.1101/gr.2.4.288

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Ahmed Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, S.A., Sarwar, Z., Batool, A., Bhat, S.A. (2022). Biotechnology in Medicine: Fundamentals. In: Anwar, M., Ahmad Rather, R., Farooq, Z. (eds) Fundamentals and Advances in Medical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-98554-7_2

Download citation

Publish with us

Policies and ethics