Skip to main content

Fault Diagnosis of Combustion Engines in MTU 16VS4000-G81 Generator Sets Using Fuzzy Logic: An Approach to Normalize Specific Fuel Consumption

  • Conference paper
  • First Online:
Intelligent Computing Systems (ISICS 2022)

Abstract

The availability of combustion engines used in generating sets is essential for the continuity of electrical service in industrial and service processes. There are different diagnostic methods that use artificial intelligence techniques to detect flaws in combustion engines such as ANN, SVM, etc. Although these methods have good results, they are so complicated that they are difficult to implement in practice. Another drawback is that they find restrictions in the detection of multiple faults and in providing a diagnosis that serves as the basis for improving important aspects such as maintenance management and fuel efficiency. This work presents a method of diagnosing faults in the MTU-16V-S4000-G81 internal combustion engines using fuzzy logic tools. The proposal is based on historical data of the process and allows the detection of the incipient deviation of the main parameters that alter the fuel consumption index. It guarantees 96.9% multiple fault detection and offers a fuzzy method that suggests maintenance actions to restore specific fuel consumption to normal immediately, facilitating efficient maintenance management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, A.K., Saxena, A., Roy, N., Choudhury, U.: Inter-turn fault stability enrichment and diagnostic analysis of power system network using wavelet transformation-based sample data control and fuzzy logic controller. Trans. Inst. Meas. Control (2021). https://doi.org/10.1177/01423312211007006

  2. Kang, J., Lu, Y., Luo, H., Li, J., Hou, Y., Zhang, Y.: Wear assessment model for cylinder liner of internal combustion engine under fuzzy uncertainty. Mech. Ind. 22, 29 (2021). https://doi.org/10.1051/meca/2021028

    Article  Google Scholar 

  3. Hadroug, N., Hafaifa, A., Alili, B., Iratni, A., Chen, X.: Fuzzy diagnostic strategy implementation for gas turbine vibrations faults detection: towards a characterization of symptom–fault correlations. J. Vibr. Eng. Technol. 1–27 (2021). https://doi.org/10.1007/s42417-021-00373-z

  4. Yazdani, S., Montazeri-Gh, M.: A novel gas turbine fault detection and identification strategy based on hybrid dimensionality reduction and uncertain rule-based fuzzy logic. Comput. Ind. 115, 103131 (2021). https://doi.org/10.1016/j.compind.2019.103131

  5. Shahbaz, M.H., Amin, A.A.: Design of active fault tolerant control system for air fuel ratio control of internal combustion engines using artificial neural networks. IEEE Access 9, 46022–46032 (2021). https://doi.org/10.1109/ACCESS.2021.3068164

    Article  Google Scholar 

  6. Bhatt, A.N., Shrivastava, N.: Application of artificial neural network for internal combustion engines: a state of the art review. Arch. Comput. Methods Eng. 1–23 (2021). https://doi.org/10.1007/s11831-021-09596-5

  7. Khazaee, M., Banakar, A., Ghobadian, B., Mirsalim, M.A., Minaei, S.: Remaining useful life (RUL) prediction of internal combustion engine timing belt based on vibration signals and artificial neural network. Neural Comput. Appl. 33(13), 7785–7801 (2020). https://doi.org/10.1007/s00521-020-05520-3

    Article  Google Scholar 

  8. da Silva Junior, E.M., de Sousa, D.R., Marinho, L.C.R.P., Formiga, C.R.B., Matamoros, E.P.: Fault diagnosis in combustion engines using artificial neural networks. SAE Technical Paper 2020-36-0076 (2021). https://doi.org/10.4271/2020-36-0076

  9. Zhang, M., Zi, Y., Niu, L., Xi, S., Li, Y.: Intelligent diagnosis of V-type marine diesel engines based on multifeatures extracted from instantaneous crankshaft speed. IEEE Trans. Instrum. Meas. 68(3), 722–740 (2018). https://doi.org/10.1109/TIM.2018.2857018

    Article  Google Scholar 

  10. Jafarian, K., Mobin, M., Jafari-Marandi, R., Rabiei, E.: Misfire and valve clearance faults detection in the combustion engines based on a multi-sensor vibration signal monitoring. Measurement 128, 527–536 (2018). https://doi.org/10.1016/j.measurement.2018.04.062

    Article  Google Scholar 

  11. Abdelrahim, E.M.: Hierarchical adaptive genetic algorithm based T–S fuzzy controller for non-linear automotive applications. Int. J. Fuzzy Syst. 1–15 (2021). https://doi.org/10.1007/s40815-021-01153-3

  12. Cai, B., et al.: Fault detection and diagnostic method of diesel engine by combining rule-based algorithm and BNs/BPNNs. J. Manuf. Syst. 57, 148–157 (2020). https://doi.org/10.1016/j.jmsy.2020.09.001

    Article  Google Scholar 

  13. Gai, J., Hu, Y.: Research on fault diagnosis based on singular value decomposition and fuzzy neural network. Shock Vibr. (2018). https://doi.org/10.1155/2018/8218657

  14. Babichev, S., Strielkovskaya, L., Zaitsev, O., Khamula, O.: Development of a fuzzy inference model for the management of a marine engine. In: Babichev, S., Lytvynenko, V., Wójcik, W., Vyshemyrskaya, S. (eds.) ISDMCI 2020. AISC, vol. 1246, pp. 331–340. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-54215-3_21

    Chapter  Google Scholar 

  15. Looney, B.: Statistical Review of World Energy, 69th edn. BP, London, UK (2020)

    Google Scholar 

  16. Dean Labrada, A., Ponce Iglesias, R., Torres Breffe, O.E., Espinosa Domínguez, J., Caballero Mena, Á.J.: Modificaciones al Relé NSR 376 SA para Grupos Electrógenos de la Tecnología MTU. Ingeniería Energética 42(2), 81–89 (2021)

    Google Scholar 

  17. Karatuğ, Ç., Arslanoğlu, Y.: Importance of early fault diagnosis for marine diesel engines: a case study on efficiency management and environment. Ships Offshore Struct. 1–9 (2020). https://doi.org/10.1080/17445302.2020.1835077

  18. Corrales Barrios, L., Ramírez Vázquez, A.: Clasificación de fallas con redes neuronales para grupos electrógenos. Ingeniería Energética 34(2), 137–150 (2013)

    Google Scholar 

  19. Song, E., Ke, Y., Yao, C., Dong, Q., Yang, L.: Fault diagnosis method for high-pressure common rail injector based on IFOA-VMD and hierarchical dispersion entropy. Entropy 21(10), 923 (2019). https://doi.org/10.3390/e21100923

    Article  MathSciNet  Google Scholar 

  20. Álvarez Kile, P., Díaz Concepción, A., Rodríguez Piñeiro, A.J., Guillén García, J., Guillén García, J.G., Alfonso Álvarez, A.: Causas de la desviación del índice de consumo de combustible en los generadores eléctricos Hyundai. Ingeniería Energética 41(2) (2020)

    Google Scholar 

  21. Fernández, J.C., Corrales, L.B., Hernández, F.H., Benítez, I.F., Núñez, J.R.: A fuzzy logic proposal for diagnosis multiple incipient faults in a power transformer. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds.) IWAIPR 2021. LNCS, vol. 13055, pp. 187–198. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89691-1_19

    Chapter  Google Scholar 

  22. Fernández Blanco, J.C., Hernández González, F.H., Corrales Barrios, L.B.: Método de lógica difusa para el diagnóstico de fallos incipientes en un transformador de 40MVA. Ingeniería Electrónica, Automática y Comunicaciones 42(2), 76–88 (2021)

    Google Scholar 

  23. Wani, S.A., Gupta, D., Farooque, M.U., Khan, S.A.: Multiple incipient fault classification approach for enhancing the accuracy of dissolved gas analysis (DGA). IET Sci. Meas. Technol. 13(7), 959–967 (2019). https://doi.org/10.1049/iet-smt.2018.5135

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the collaboration of the members of the Research Project: Advanced Automation for the Elaboration and Refinement of Steels (AA-ELACERO) - Code: P211LH021-023 financed by the Stainless Steel Company, ACINOX, Las Tunas in Cuba. We thank the specialists of the Electric and Automatic Group at ACINOX. We are very grateful to the Department of Operations (GEYSEL), for guaranteeing the necessary resources to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernández, J.C., Corrales, L.B., Benítez, I.F., Núñez, J.R. (2022). Fault Diagnosis of Combustion Engines in MTU 16VS4000-G81 Generator Sets Using Fuzzy Logic: An Approach to Normalize Specific Fuel Consumption. In: Brito-Loeza, C., Martin-Gonzalez, A., Castañeda-Zeman, V., Safi, A. (eds) Intelligent Computing Systems. ISICS 2022. Communications in Computer and Information Science, vol 1569. Springer, Cham. https://doi.org/10.1007/978-3-030-98457-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98457-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98456-4

  • Online ISBN: 978-3-030-98457-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics