Skip to main content

Evaluation of Human Pose Estimation in 3D with Monocular Camera for Clinical Application

  • Conference paper
  • First Online:
Book cover Intelligent Computing Systems (ISICS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1569))

Included in the following conference series:

Abstract

State of the art in the area of image processing and machine learning shows significant advances in the estimation of human posture in 2D and 3D. However, it has not been accurately reported whether the use of these methodologies provides per joint plane of motion information within the range of error of clinical measurements (5º).

The purpose of this work was to select a method for estimating human posture in 3D with a monocular camera from the state of the art and to statistically compare it with clinical measurements in the angular variables.

A discriminative method for estimating human posture was trained with the Human3.6M database, and results were obtained from the performance of the posture estimation model in 3D with a monocular camera. Subsequently, angular variables were obtained by plane of movement per predicted joint.

Our results show that are joints with less than 5º of error in a plane of movements, such as the knee and elbow in the sagittal plane and the wrist in the frontal plane. On the other hand, in other joints such as the hip and ankle, its results are dependent on the action, the time periods of the evaluated actions, and the view of the camera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter, D.A.: Biomechanics and Motor Control of Human Movement (2009). https://doi.org/10.1002/9780470549148

  2. Neumann, D.A.: Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. Mosby (2010)

    Google Scholar 

  3. Norkin, C.C., Joyce White, D.: Measurement of Joint Motion: A Guide to Goniometry. F.A. Davis (2016)

    Google Scholar 

  4. Piriyaprasarth, P., Morris, M.E.: Psychometric properties of measurement tools for quantifying knee joint position and movement: a systematic review. Knee 14(1), 2–8 (2007)

    Article  Google Scholar 

  5. Chèze, L.: Kinematic Analysis of Human Movement (2014). https://doi.org/10.1002/9781119058144

  6. Seidel, D.H., D’Souza, S.F., Alt, W.W., Wachowsky, M.: Comparison of an inertial sensor based motion measurement system with a 3D-reflex marker based motion capture system. Gait Posture 42, S75 (2015)

    Article  Google Scholar 

  7. Moeslund, T.B., Hilton, A., Krüger, V., Sigal, L.: Visual Analysis of Humans: Looking at People. Springer, Heidelberg (2011). https://doi.org/10.1007/978-0-85729-997-0

    Book  Google Scholar 

  8. Sarafianos, N., Boteanu, B., Ionescu, B., Kakadiaris, I.A.: 3D Human pose estimation: a review of the literature and analysis of covariates. Comput. Vis. Image Underst. 152, 1–20 (2016). https://doi.org/10.1016/j.cviu.2016.09.002

    Article  Google Scholar 

  9. Chen, C.-H., Ramanan, D.: 3D human pose estimation = 2D pose estimation matching. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). https://doi.org/10.1109/cvpr.2017.610

  10. Li, S., Chan, A.B.: 3D human pose estimation from monocular images with deep convolutional neural network. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 332–347. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16808-1_23

    Chapter  Google Scholar 

  11. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017). https://doi.org/10.1109/iccv.2017.288

  12. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_33

    Chapter  Google Scholar 

  13. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017). https://doi.org/10.1109/iccv.2017.51

  14. Ji, X., Fang, Q., Dong, J., Shuai, Q., Jiang, W., Zhou, X.: A survey on monocular 3D human pose estimation. Virtual Reality Intell. Hardw. 2(6), 471–500 (2020). https://doi.org/10.1016/j.vrih.2020.04.005

    Article  Google Scholar 

  15. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014). https://doi.org/10.1109/TPAMI.2013.248

    Article  Google Scholar 

  16. Agarwal, A., Triggs, B.: Recovering 3D human pose from monocular images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 44–58 (2006)

    Article  Google Scholar 

  17. Ning, H., Xu, W., Gong, Y., Huang, T.: Discriminative learning of visual words for 3D human pose estimation. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition (2008). https://doi.org/10.1109/cvpr.2008.4587534

  18. Kinsley, H., Kukieła, D.: Neural networks from scratch in Python (2020)

    Google Scholar 

  19. Dang, Q., Yin, J., Wang, B., Zheng, W.: Deep learning based 2D human pose estimation: a survey. Tsinghua Sci. Technol. 24(6), 663–676 (2019). https://doi.org/10.26599/TST.2018.9010100

    Article  Google Scholar 

  20. Brigstocke, G.H.O., Hearnden, A., Holt, C., Whatling, G.: In-vivo confirmation of the use of the dart thrower’s motion during activities of daily living. J. Hand Surg.: Eur. 39(4), 373–378 (2014). https://doi.org/10.1177/1753193412460149

    Article  Google Scholar 

  21. Prima, O.D.A., Imabuchi, T.: Single camera 3D human pose estimation for tele-rehabilitation. In: ETelemed 2019, pp. 13–18 (2019)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Agencia Nacional de Investigación y Desarrollo (ANID) grants FONDECYT 1221696, FONDEQUIP EQM210020, as well as PIA Anillo ACT192015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carrasco-Plaza .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 116 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carrasco-Plaza, J., Cerda, M. (2022). Evaluation of Human Pose Estimation in 3D with Monocular Camera for Clinical Application. In: Brito-Loeza, C., Martin-Gonzalez, A., Castañeda-Zeman, V., Safi, A. (eds) Intelligent Computing Systems. ISICS 2022. Communications in Computer and Information Science, vol 1569. Springer, Cham. https://doi.org/10.1007/978-3-030-98457-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98457-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98456-4

  • Online ISBN: 978-3-030-98457-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics