Skip to main content

A Brief Introduction to Hot Desert Environments: Climate, Geomorphology, Habitats, and Soils

  • Chapter
  • First Online:
Microbiology of Hot Deserts

Part of the book series: Ecological Studies ((ECOLSTUD,volume 244))

Abstract

This chapter provides a broad introduction to dryland environments with a focus on desert climate, geomorphology, habitats, and soils that collectively provide opportunities and limitations for microbial life. Desert precipitation is governed by global circulation patterns, which determine the distribution of drylands and associated rainfall gradients. Desert margins especially are subject to pronounced inter-annual variability, and good years may be replaced by a negative departure from mean rainfall, resulting in drought. The depth of drought for any location can be examined using the widely accessible Standardised Precipitation-Evapotranspiration Index (SPEI) and Normalised Difference Vegetation Index (NDVI). The topography of desert surfaces and habitats can be characterised by rocky run-off from uplands and fluvial run-on in channels and fan settings. Other settings may be dominated by mobile sediments such as dunes or shallow groundwater, which promotes evaporation and build-up of salts. Gravel plains, on the other hand, may provide stable surfaces. Desert soils and associated surfaces, the so-called pedoderm, require stability to form and prevail. The abiotic properties of unconsolidated porous media moderate the physical and chemical subsurface environment. Crusts in particular, play a role in regulating fluxes, including water, carbon, and nitrogen, which collectively determine the microbial subsurface environment. Moisture regimes vary in space and time along with geomorphic conditions, the distribution of habitats, and the state of the pedoderm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agassi M, Shainberg I, Morin J (1981) Effect of electrolyte concentration and soil sodicity on infiltration rate and crust formation. Soil Sci Soc Am J 45:848–851

    Article  Google Scholar 

  • Austin A, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    Article  CAS  PubMed  Google Scholar 

  • Barnes CJ, Jacobson G, Smith GD (1990) The origin of high-nitrate ground waters in the Australian arid zone. J Hydrol 137:181–197

    Article  Google Scholar 

  • Barré P, Fernandez-Ugalde O, Virto I, Velde B, Chenu C (2014) Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: incomplete knowledge and exciting prospects. Geoderma 235–236:382–395

    Article  CAS  Google Scholar 

  • Barthlott W, Porembski S (2000) Why study inselbergs? In: Porembski S, Barthlott W (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Berlin, pp 1–6

    Google Scholar 

  • Beck H, Zimmermann N, McVicar T, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5:180214

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker-Reshef I, Justice C, Sullivan M, Vermote E, Tucker C, Anyamba A, Small J, Pak E, Masuoka E, Schmaltz J, Hansen M (2010) Monitoring global croplands with coarse resolution earth observations: the Global Agriculture Monitoring (GLAM) project. Remote Sens 2(6):1589–1609

    Article  Google Scholar 

  • Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(10):3001–3023

    Article  Google Scholar 

  • Bowers JE (1982) The plant ecology of inland dunes in western North America. J Arid Environ 5(3):199–220

    Article  Google Scholar 

  • Boyer DC (1989) Some characteristics of plant communities of three dunes situated across a climatic gradient in the Namib Desert. Madoqua 16(2):141–148

    Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Sparks DL, Page A, Helmke PR, Loeppert R, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis, part 3 : chemical method. Soil Science Society of America Book Soil Science Society of America Book Series. Soil Science Society of America Inc and American Society of Agronomy, Madison, WI, pp 1085–1121

    Google Scholar 

  • Brewer R, Crook KAW, Speight JG (1970) Proposal for soil stratigraphic units in the Australian Stratigraphic Code. Aust J Earth Sci 17:103–111

    Google Scholar 

  • Brown KJ, Dunkerley DL (1996) The influence of hillslope gradient, regolith texture, stone size and stone position on the presence of a vesicular layer and related aspects of hillslope hydrologic processes: a case study from the Australian arid zone. Catena 26(1-2):71–84

    Article  Google Scholar 

  • Buckley RC, Chen W, Liu Y, Zhu Z (1986) Characteristics of the Tengger dunefield, north-central China, and comparison with the central Australian dunefields. J Arid Environ 10(2):97–101

    Article  Google Scholar 

  • Burket LM, Bestelmeyer BT, Tugel AJ (2012) A field guide to pedoderm and pattern classes. Version 2.3. USDA-ARS Jornada Experimental Range, Las Cruces, NM

    Google Scholar 

  • Carrier BL, Abbey W, Beegle LW, Bhartia R, Liu Y (2019) Attenuation of ultraviolet radiation in rocks and minerals: implications for mars science. J Geophys Res Planet 124:2599–2612

    Article  CAS  Google Scholar 

  • Cogle AL, Rao KPC, Yule DF, Smith GD, George PJ, Srinivasan ST, Jangawad L (2002) Soil management for Alfisols in the semiarid tropics: erosion, enrichment ratios and runoff. Soil Use Manag 18(1):10–17

    Article  Google Scholar 

  • Cooke RU, Warren A, Goudie AS (1993) Desert geomorphology. University College London, London

    Book  Google Scholar 

  • Danin A (1996) Plants of desert dunes. Springer, Berlin

    Book  Google Scholar 

  • Dı́az-Hernández JL, Fernández EB, González JL (2003) Organic and inorganic carbon in soils of semiarid regions: a case study from the Guadix–Baza basin (Southeast Spain). Geoderma 114:65–80

    Article  CAS  Google Scholar 

  • Dunkerley DL, Brown KJ (1997) Desert soils. In: Thomas DSG (ed) Arid zone geomorphology: process, form and change in drylands, 2nd edn. Wiley-Blackwell, Chichester, UK, pp 55–68

    Google Scholar 

  • Eckardt FD, Soderberg K, Coop LJ, Muller AA, Vickery KJ, Grandin RD, Jack C, Kapalanga TS, Henschel J (2013) The nature of moisture at Gobabeb, in the central Namib Desert. J Arid Environ 93:7–19

    Article  Google Scholar 

  • Eldridge DJ, Zaady E, Shachak M (2000) Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. Catena 40(3):323–336

    Article  Google Scholar 

  • Essington ME (2015) Soil and water chemistry: an integrative approach, 2nd edn. CRC Press, Boca Raton Florida

    Book  Google Scholar 

  • Felde VJMNL, Peth S, Uteau-Puschmann D, Drahorad S (2014) Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers Conserv 23:1687–1708

    Article  Google Scholar 

  • Fernández-Ugalde O, Barré P, Hubert F, Virto I, Girardin C, Ferrage E, Caner L, Chenu C (2013) Clay mineralogy differs qualitatively in aggregate-size classes: clay-mineral-based evidence for aggregate hierarchy in temperate soils. Eur J Soil Sci 64:410–422

    Article  CAS  Google Scholar 

  • Fey MV, Mills AJ, Yaalon DH (2006) The alternative meaning of pedoderm and its use for soil surface characterization. Geoderma 133(3–4):474–477

    Article  Google Scholar 

  • Gibson AC (1996) Structure-function relations of warm desert plants. Springer, Berlin

    Book  Google Scholar 

  • Goudie AS (2002) Great warm deserts of the world: landscapes and evolution. Geomorphological landscapes of the world 1. Oxford University Press, Oxford

    Google Scholar 

  • Graham RC, Hirmas DR, Wood YA, Amrhein C (2008) Large near-surface nitrate pools in soils capped by desert pavement in the Mojave Desert, California. Geology 36(3):259–262

    Article  CAS  Google Scholar 

  • Halis Y, Benhaddya ML, Bensaha H, Mayouf R, Lahcini A, Belhamra M (2012) Diversity of halophyte desert vegetation of the different saline habitats in the Valley of Oued Righ, Low Sahara Basin, Algeria. Res J Environ Earth Sci 4(3):308–315

    Google Scholar 

  • Harvey A (2011) Dryland alluvial fans. In: Thomas DSG (ed) Arid zone geomorphology: process, form and change in drylands. Wiley-Blackwell, Chichester, UK, pp 333–371

    Chapter  Google Scholar 

  • Hegazy A, Lovett-Doust J (2016) Plant ecology of the Middle East. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hillel D (2004) Introduction to soil physics. Elsevier, San Diego, CA

    Google Scholar 

  • Hooke JM (2016) Morphological impacts of flow events of varying magnitude on ephemeral channels in a semiarid region. Geomorphology 252:128–143

    Article  Google Scholar 

  • Hooke JM, Brookes CJ, Duane W, Mant JM (2005) A simulation model of morphological, vegetation and sediment changes in ephemeral streams. Earth Surf Process Landforms 30:845–866

    Article  Google Scholar 

  • Howard AD, Kerby G (1983) Channel changes in Badlands. Geol Soc Am Bull 94(6):739–752

    Article  Google Scholar 

  • Itami K, Kyuma K (1995) Dispersion behavior of soils from reclaimed lands with poor soil physical properties and their characteristics with special reference to clay mineralogy. Soil Sci Plant Nutr 41(1):45–54

    Article  Google Scholar 

  • Jürgens N, Burke A, Seely MK, Jacobson KM (1997) Desert. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of Southern Africa. Cambridge University Press, Cambridge, pp 189–214

    Google Scholar 

  • King MD (2007) Our changing planet. Cambridge University Press, Cambridge

    Google Scholar 

  • Kleber M, Mikutta R, Torn MS, Jahn R (2005) Poorly crystalline mineral phases protect organic matter. Eur J Soil Sci 56:717–725

    CAS  Google Scholar 

  • Kruckeberg AR (2002) Geology and plant life. University of Washington Press, Seattle

    Google Scholar 

  • Lancaster N (2002) Geomorphology of desert dunes. Routledge physical environment. Routledge, London

    Google Scholar 

  • Lee JA, Gill TE (2015) Multiple causes of wind erosion in the Dust Bowl. Aeolian Res 19:15–36

    Article  Google Scholar 

  • Marasco R, Mosqueira MJ, Fusi M, Ramond J-B, Merlino G, Booth JM, Maggs-Kölling G, Cowan DA, Daffonchio D (2018) Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome 6:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS MicrobiolEcol 21(2):121–130

    Article  CAS  Google Scholar 

  • McKee ED (ed) (1979) A study of global sand seas. US Geological Survey Professional Paper 1052. US Government Printing Office, Washington, DC

    Google Scholar 

  • Michalski G, Böhlke JK, Thiemens M (2004) Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim Cosmochim Acta 68(20):4023–4038

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Sparks DL, Page A, Helmke PR, Loeppert R, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis, part 3: chemical method. Soil Science Society of America Book Series. Soil Science Society of America Inc and American Society of Agronomy, Madison, WI, pp 961–1010

    Google Scholar 

  • Nicholson SE (2011) Dryland climatology. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Parsons AJ, Abrahams AD (eds) (2009) Geomorphology of desert environments, 2nd edn. Springer, Heidelberg, Germany

    Google Scholar 

  • Peterjohn WT, Schlesinger WH (1990) Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 10:67–79

    Article  Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10(8):551–562

    Article  CAS  PubMed  Google Scholar 

  • Pye K (1995) The nature, origin and accumulation of loess. Quaternary Sci Rev 14(7-8):653–667

    Article  Google Scholar 

  • Pye K, Tsoar H (1990) Aeolian sand and sand dunes. Springer, Berlin

    Book  Google Scholar 

  • Rabbi S, Daniel H, Lockwood P, Macdonald C, Pereg L, Tighe M, Wilson BR, Young IM (2016) Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity. Sci Rep 6:33012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahbek C, Borregaard MK, Antonelli A, Colwell RK, Holt BG, Nogues-Bravo D, Rassmussen CMØ, Richardson K, Rosing MT, Whittaker RJ, Fjeldså J (2019) Building mountain biodiversity: geological and evolutionary processes. Science 365(6458):1114–1119

    Article  CAS  PubMed  Google Scholar 

  • Rendell H (2011) Tectonic frameworks. In: Thomas DSG (ed) Arid zone geomorphology: process, form and change in drylands. Wiley-Blackwell, Chichester, UK, pp 17–25

    Chapter  Google Scholar 

  • Ringrose S, Seely M, Matheson W, Cassidy L, Kemosidile T, Diskin S, Coetzee S (2018) Nature and possible origins of hyper-arid floodplain islands: exemplified by the Kuiseb river, Namibia. Trans R Soc S Afr 73(2):143–157

    Article  Google Scholar 

  • Robinson MD, Seely MK (1980) Physical and biotic environments of the southern Namib dune ecosystem. J Arid Environ 3:183–203

    Article  Google Scholar 

  • Ruiz-Vera VM, Wu L (2006) Influence of sodicity, clay mineralogy, prewetting rate, and their interaction on aggregate stability. Soil Sci Soc Am J 70:1825–1833

    Article  CAS  Google Scholar 

  • Sabater S, Timoner X, Bornette G, De Wilde M, Stromberg JC, Stella JC (2017) The biota of intermittent rivers and ephemeral streams: algae and vascular plants. In: Datry T, Bonada N, Boulton A (eds) Intermittent rivers and ephemeral streams. Academic, London, pp 189–216

    Chapter  Google Scholar 

  • Sandercock PJ, Hooke JM, Mant JM (2007) Vegetation in dryland river channels and its interaction with fluvial processes. Prog Phys Geogr Earth Environ 31(2):107–129

    Article  Google Scholar 

  • Seely MK (1990) Patterns of plant establishment on a linear desert dune. Isr J Bot 39:443–451

    Google Scholar 

  • Seely MK, Louw GN (1980) First approximation of the effects of rainfall on the ecology and energetics of a Namib Desert dune ecosystem. J Arid Environ 3:25–54

    Article  Google Scholar 

  • Shainberg I, Mamedov AI, Levy GJ (2003) Role of wetting rate and rainfall energy in seal formation and erosion. Soil Sci 168(1):54–62

    Article  CAS  Google Scholar 

  • Shaw PA, Bryant RG (2011) Pans, playas and salt lakes. In: Thomas DSG (ed) Arid zone geomorphology: process, form and change in drylands. Wiley, Chichester, UK, pp 373–401

    Chapter  Google Scholar 

  • Shaw JR, Cooper DJ (2008) Linkages among watersheds, stream reaches, and riparian vegetation in dryland ephemeral stream networks. J Hydrol 350:68–82

    Article  Google Scholar 

  • Shmida A, Evanari M, Noy-Meir I (1986) Hot desert ecosystems: an integrated view. In: Evenari M, Noy-Meir I, Goodall DW (eds) Ecosystems of the world 12B, hot deserts and arid shrublands, B. Elsevier, Amsterdam, pp 379–387

    Google Scholar 

  • Steinberger Y, Whitford WG (1988) Decomposition process in Negev ecosystems. Oecologia 75:61–66

    Article  CAS  PubMed  Google Scholar 

  • Stone AEC, Edmunds WM (2014) Naturally high nitrate in unsaturated zone sand dunes above the Stampriet Basin, Namibia. J Arid Environ 105:41–51

    Article  Google Scholar 

  • Thevenot M, Dignac MF, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42(8):1200–1211

    Article  CAS  Google Scholar 

  • Thomas DSG (ed) (2011) Arid zone geomorphology: process, form and change in drylands, 3rd edn. Wiley-Blackwell, Chichester, UK

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Rem Sens Environ 8(2):127–150

    Article  Google Scholar 

  • Turk JK, Graham RC (2011) Distribution and properties of vesicular horizons in the western United States. Soil Sci Soc Am J 75:1449–1461

    Article  CAS  Google Scholar 

  • Viles HA (2011) Weathering systems. In: Thomas DSG (ed) Arid zone geomorphology: process, form and change in drylands. Wiley-Blackwell, Chichester, pp 83–100

    Chapter  Google Scholar 

  • Von Schiller D, Bernal S, Dahm CN, Martí E (2017) Nutrient and organic matter dynamics in intermittent rivers and ephemeral streams. In: Datry T, Bonada N, Boulton A (eds) Intermittent rivers and ephemeral streams. Academic, London, pp 135–160

    Chapter  Google Scholar 

  • Wainwright J, Bracken LJ (2011) Runoff generation, overland flow and erosion on hillslopes. In: Thomas DSG (ed) Arid zone geomorphology: process, form and change in drylands. Wiley-Blackwell, Chichester, pp 235–267

    Chapter  Google Scholar 

  • Walter H (1983) Vegetation of the earth and the ecological systems of the geo-biosphere. Springer, Berlin, pp 113–147

    Google Scholar 

  • Walvoord MA, Phillips FM, Stonestrom DA, Evans RD, Hartsough PC, Newman BD, Striegl RG (2003) A reservoir of nitrate beneath desert soils. Science 302:1021–1024

    Article  CAS  PubMed  Google Scholar 

  • Ward D (2009) The biology of deserts. Oxford University Press, Oxford

    Google Scholar 

  • Warrington DN, Mamedov AI, Bhardway AK, Levy GJ (2009) Primary particle size distribution of eroded material affected by degree of aggregate slaking and seal development. Eur J Soil Sci 60:84–93

    Article  Google Scholar 

  • Westerman RL, Tucker TC (1978) Factors affecting denitrification in a Sonoran Desert soil. Soil Sci Soc Am J 42:596–599

    Article  CAS  Google Scholar 

  • Wood WW, Sanford WE, Habshi ARSA (2002) Source of solutes to the coastal sabkha of Abu Dhabi. Geol Soc Am Bull 114(3):259–268

    Article  CAS  Google Scholar 

  • Yeaton RI (1988) Structure and function of the Namib dune grasslands: characteristics of the environmental gradients and species distributions. J Ecol 76(3):744–758

    Article  Google Scholar 

  • Young IM, Crawford JW (2004) Interactions and self-organization in the soil-microbe complex. Science 304(5677):1634–1637

    Article  CAS  PubMed  Google Scholar 

  • Zamanian K, Pustovoytov K, Kuzyakov Y (2016) Pedogenic carbonates: forms and formation processes. Earth Sci Rev 157:1–17

    Article  CAS  Google Scholar 

  • Zipser EJ, Cecil DJ, Liu C, Nesbitt SW, Yorty DP (2006) Where are the most intense thunderstorms on earth? Bull Am Meteorol Soc 87:1057–1071

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Leandri Wessels for preparing Figs. 1.8, 1.9, 1.10, 1.11, and 1.12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank D. Eckardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eckardt, F.D., Maggs-Kölling, G., Marais, E., de Jager, P.C. (2022). A Brief Introduction to Hot Desert Environments: Climate, Geomorphology, Habitats, and Soils. In: Ramond, JB., Cowan, D.A. (eds) Microbiology of Hot Deserts. Ecological Studies, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-030-98415-1_1

Download citation

Publish with us

Policies and ethics