Abstract
The purpose of this pre-/posttest quasi-experimental study was to examine the effects of coding activities supported by the emotional educational robot Cozmo on seventh grade students’ computational thinking, competency beliefs, and engagement compared to the computer-based program of Scratch. Two versions of the coding curriculum were developed that shared the same content and instructional features but differed in the code blocks used in each program. Two intact classes at a public middle school in the Midwestern United States participated in the study during the regularly scheduled Technology course. One class received the Scratch coding curriculum (n = 21), and the other class received the robotics coding curriculum (n = 22).
Results revealed non-significant posttest differences in computational thinking and competency beliefs among the Scratch and Cozmo interventions. However, students found Cozmo to be significantly more engaging than Scratch. Both interventions significantly improved students’ computational thinking and competency beliefs from pre- to posttest.
This study contributes to the emerging literature on coding education in a public school setting. The positive gains in the cognitive and affective domains of learning can serve as a point of reference for researchers, designers, and educators with the desire to introduce students to coding.
Keywords
- Educational robotics
- Scratch
- Cozmo
- Computational thinking
- Competency beliefs
- Engagement
This is a preview of subscription content, access via your institution.
Buying options
References
Carter, L.: Why students with an apparent aptitude for computer science don’t choose to major in computer science. In: 37th SIGCSE Technical Symposium on Computer Science Education, pp. 27–31. ACM, New York (2006)
Kong, S., Chiu, M.M., Lai, M.: A study of primary school students’ interest, collaboration attitude, and programming empowerment in computational thinking education. Comput. Educ. 127, 178–189 (2018)
Tai, R., Liu, C.Q., Maltese, A.V., Fan, X.: Career choice: enhanced: planning early for careers in science. Science 312, 1143–1144 (2006)
Monroy-Hernández, A., Resnick, M.: Empowering kids to create and share programmable media. Interactions 15(2), 50–53 (2015)
Maloney, J., Peppler, K., Kafai, Y.B., Resnick, M., Rusk, N.: Programming by choice: urban youth learn programming with scratch. In: 39th SIGCSE Technical Symposium on Computer Science Education, pp. 367–371. ACM, New York (2008)
Fields, D.A., Kafai, Y.B., Giang, M.T.: Youth computational participation in the wild. ACM Trans. Comput. Educ. 17(3), 1–22 (2017)
Armoni, M., Meerbaum-Salant, O., Ben-Ari, M.: From Scratch to “real” programming. ACM Trans. Comput. Educ. 14(4), 1–15 (2015)
Fronza, I., El Ioini, N., Corral, L.: Leveraging robot programming to foster computational thinking. In: 9th International Conference on Computer Supported Education, vol. 2, CSEDU, pp. 109–116. Springer, Heidelberg (2017). https://doi.org/10.5220/0006310101090116
Pachidis, T.P., Macedonia, E., Vrochidou, E., Kaburlasos, V., Macedonia, E.: Social robotics in education: state-of-the-art and directions. In: International Conference on Robotics, July 2018
Rosanda, V., Starčič, A.I.: A review of social robots in classrooms: emerging educational technoogy and teacher education. Educ. Self Dev. 14(3), 93–106 (2019)
Anwar, S., Bascou, N.A., Menekse, M., Kardgar, A.: A systematic review of studies on educational robotics. J. Pre-College Eng. Educ. Res. 9(2), 19–42 (2019)
Papert, S., Harel, I.: Situating Constructionism. Ablex Publishing Corporation, Norwood (1991)
Julià, C., Antolí, J.Ò.: Spatial ability learning through educational robotics. Int. J. Technol. Des. Educ. 26(2), 185–203 (2015). https://doi.org/10.1007/s10798-015-9307-2
Naneva, S., Sarda Gou, M., Webb, T.L., Prescott, T.J.: A systematic review of attitudes, anxiety, acceptance and trust towards social robots. Int. J. Soc. Robot. 12, 1179–1201 (2020)
Björling, E., Rose, E., Davidson, A., Ren, R., Wong, D.: Can we keep him forever? Teens’ engagement and desire for emotional connection with a social robot. Int. J. Soc. Robot. 12(1), 65–77 (2020)
Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., Tanaka, F.: Social robots for education: a review. Sci. Robot. 3(21), 1–10 (2018)
Davide, G., Pauline, C., Federica, F., Tiziana, P., Agnieszka, W.: Follow the white robot: efficacy of robot-assistive training for children with autism-spectrum condition. Soc. Cogn. Hum.-Robot Interact. 86, 101822 (2020)
Keller, L., John, I.: Motivating female students for computer science by means of robot workshops. Int. J. Eng. Pedagogy 10(1), 94–108 (2020)
Jovanovic, V.M., et al.: Exposing students to STEM careers through hands on activities with drones and robots. In: ASEE Annual Conference and Exposition, Conference Proceedings (2019)
Szecsei, D.: Using storytelling and robot theater to develop computational thinking. In: Purdue University Symposium on Education in Entertainment and Engineering (2019)
Ahmad, M.I., Khordi-Moodi, M., Lohan, K.S.: Social robot for STEM education. In: ACM/IEEE International Conference on Human-Robot Interaction, pp. 90–92 (2020)
Román-González, M., Pérez-González, J.C., Jiménez-Fernández, C.: Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Comput. Hum. Behav. 72, 678–691 (2017)
Özüorçun, N.Ç., Bicen, H.: Does the inclusion of robots affect engineering students’ achievement in computer programming courses? Eurasia J. Math. Sci Technol. Educ. 13(8), 4779–4787 (2017)
Pugnali, A., Sullivan, A.: The impact of user interface on young children’s computational thinking. J. Inf. Techol. Educ. Innov. Pract. 16(16), 171–193 (2017)
Bandura, A.: Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice-Hall (1986)
Hinton, T.B.: An exploratory study of a robotics educational platform on STEM career interests in middle school students. Diss. Abstr. Int. 78, 146 (2018)
Weese, J.L., Feldhausen, R., Bean, N.H.: The impact of STEM experiences on student self-efficacy in computational thinking. In: ASEE Annual Conference and Exposition, Conference Proceedings, June 2016
Phetsrikran, T., Massagram, W., Harfield, A.: First steps in teaching computational thinking through mobile technology and robotics. Asian Int. J. Soc. Sci. 17(3), 37–52 (2017)
Witherspoon, E.B., Higashi, R.M., Schunn, C.D., Baehr, E.C., Shoop, R.: Developing computational thinking through a virtual robotics programming curriculum. ACM Trans. Comput. Educ. 18(1), 1–20 (2017)
Witherspoon, E.B., Schunn, C.D., Higashi, R.M., Shoop, R.: Attending to structural programming features predicts differences in learning and motivation. J. Comput. Assistaed Learn. 34(2), 115–128 (2018)
Merino-Armero, J.M., González-Calero, J.A., Cózar-Gutiérrez, R., Villena-Taranilla, R.: Computational thinking initiation. An experience with robots in primary education. J. Res. Sci. Math. Technol. Educ. 1(2), 181–206 (2018)
Brennan, K., Balch, C., Chung, M.: An introductory computing curriculum using Scratch. Harvard Graduate Sch. Educ. 154, 23–38 (2011)
Chen, Y.-F., Cannady, M.A., Schunn, C., Dorph, R.: Measures technical brief: competency beliefs in STEM. Activiation Lab (2017)
Chung, J., Cannady, M.A., Schunn, C., Dorph, R., Bathgate, M.: Measures technical brief: engagement in science learning activities. Activation Lab (2016)
Djambong, T., Freiman, V.: Task-based assessment of students’ computational thinking skills developed through visual programming or tangible coding environments. In: 13th International Conference on Cognition and Exploratory Learning in Digital Age, Celda, pp. 41–51 (2016)
Merkouris, A., Chorianopoulos, K.: Introducing computer programming to children through robotic and wearable devices. In: ACM International Conference Proceeding Series, pp. 69–72 (2015)
Plass, J.L., Heidig, S., Hayward, E.O., Homer, B.D., Um, E.: Emotional design in multimedia learning: effects of shape and color on affect and learning. Learn. Instr. 29, 128–140 (2013)
Poh, L., Toh, E., Causo, A., Tzuo, P.-W., Chen, I.-M., Yeo, S.H.: A review on the use of robots in education and young children. Educ. Technol. Soc. 19(2), 148–163 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Smith, S., Novak, E., Schenker, J., Kuo, CL. (2022). Effects of Computer-Based (Scratch) and Robotic (Cozmo) Coding Instruction on Seventh Grade Students’ Computational Thinking, Competency Beliefs, and Engagement. In: Kim, JH., Singh, M., Khan, J., Tiwary, U.S., Sur, M., Singh, D. (eds) Intelligent Human Computer Interaction. IHCI 2021. Lecture Notes in Computer Science, vol 13184. Springer, Cham. https://doi.org/10.1007/978-3-030-98404-5_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-98404-5_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98403-8
Online ISBN: 978-3-030-98404-5
eBook Packages: Computer ScienceComputer Science (R0)