Skip to main content

Sustainability Challenges and Future Perspectives of Biopolymer

  • Chapter
  • First Online:
Biopolymers

Abstract

Biopolymer has become a significant alternative to conventional petroleum-based plastics. Over the years, ‘time and energies’ have been spent to sustain and modify these traditional biopolymers to make them more user-friendly and via designing novel polymer composites out of naturally occurring materials. These efforts have also been influenced by the idea that biodegradable polymer materials will reduce the production of synthetic polymer at very low cost, thereby producing a positive effect both environmentally and economically. This chapter discusses about the sustainability challenges of biopolymer production and future perspectives of biopolymer. The market growth and factors influence the demand of biopolymers that were introduced in several aspects: (i) cost and competition with existing synthetic polymers, (ii) facile production routes, (iii) availability of viable sources for biopolymers, and (iv) environmental aspect of biopolymer versus synthetic polymer and lastly the discussion of the future perspectives of biopolymer. Lastly, this chapter summarizes findings obtained in recent years, trying to identify open questions and future perspectives to overcome the present gaps and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achim N, Hashimah Alias N, Aimi Ghazali N, Najwa Muhd Rodhi M, Amran Tengku Mohd T, Yahya E (2015) Polymer gelled technology to improve sweep efficiency in enhanced oil recovery: a literature review. Adv Mater Res 1113:690–694. https://doi.org/10.4028/www.scientific.net/AMR.1113.690

  2. Ahmad R, Mohd S, Ibrahim R, Abral H, Roslim M, Huzaifah M, Mohd A, Murat A, Azammi N, Adrinata M, Nor M, Norrrahim F, Jumaidin R (2019) Sugar palm ( Arenga pinnata ( Wurmb.) Merr ) cellulosic fibre hierarchy : a comprehensive approach from macro to nano scale. Integr Med Res 8:2753–2766. https://doi.org/10.1016/j.jmrt.2019.04.011

    Article  CAS  Google Scholar 

  3. Alias NH, Jaafar J, Samitsu S, Ismail AF, Othman MHD, Rahman MA, Othman NH, Yusof N, Aziz F, Mohd TAT (2020) Efficient removal of partially hydrolysed polyacrylamide in polymer-flooding produced water using photocatalytic graphitic carbon nitride nanofibres. Arab J Chem 13:4341–4349

    Article  CAS  Google Scholar 

  4. Almeida HN, Calixto GQ, Chagas BME, Melo DMA, Resende FM, Melo MAF, Braga RM (2017) Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis. Environ Sci Pollut Res 24:14142–14150. https://doi.org/10.1007/s11356-017-9009-2

    Article  CAS  Google Scholar 

  5. Arun KB, Madhavan A, Sindhu R, Binod P, Pandey A, Sirohi RR, R (2020) Remodeling agro-industrial and food wastes into value-added bioactives and biopolymers. Ind Crops Prod 154:112621.https://doi.org/10.1016/j.indcrop.2020.112621

  6. Aslan AKHN, Ali MDM, Morad NA, Tamunaidu P (2016) Polyhydroxyalkanoates production from waste biomass. In: IOP conference series: earth and environmental science. Institute of Physics Publishing, p 012040. https://doi.org/10.1088/1755-1315/36/1/012040

  7. Azuwa M, Salleh WNW, Jaafar J, Fauzi A, Tanemura M (2016) Regenerated cellulose membrane as bio-template for in-situ growth of visible-light driven C-modified mesoporous titania. Carbohyd Polym 146:166–173. https://doi.org/10.1016/j.carbpol.2016.03.050

    Article  CAS  Google Scholar 

  8. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8. https://doi.org/10.1186/2194-0517-2-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bioplastics & Biopolymers Market Global Forecast to 2025 | MarketsandMarkets, (n.d.). https://www.marketsandmarkets.com/Market-Reports/biopolymers-bioplastics-market-88795240.html?gclid=Cj0KCQjwpdqDBhCSARIsAEUJ0hMR51KOGNMFq0J1jrcsIr-GPErh6hq6TlSHuCj3XY3jfTqr6gYt7woaArc3EALw_wcB (accessed April 15, 2021). Biopolymer has good growth prospects in the World, (n.d.). http://atozplastics.com/upload/Literature/Biopolymerhasagoodgrowthprospects.asp. Accessed 12 Apr 2021

  10. Ceylan S, Goldfarb JL (2015) Green tide to green fuels: TG-FTIR analysis and kinetic study of Ulva prolifera pyrolysis. Energy Convers Manage 101:263–270. https://doi.org/10.1016/j.enconman.2015.05.029

    Article  CAS  Google Scholar 

  11. Chen GQ, Hajnal I, Wu H, Lv L, Ye J (2015) Engineering biosynthesis mechanisms for diversifying Polyhydroxyalkanoates. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2015.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen GQ, Jiang XR (2017) Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synth Syst Biotechnol. https://doi.org/10.1016/j.synbio.2017.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ciapponi R, Turri S, Levi M (2019) Mechanical reinforcement by microalgal biofiller in novel thermoplastic biocompounds from plasticized gluten. Materials 12.https://doi.org/10.3390/ma12091476

  14. Colombo B, Sciarria TP, Reis M, Scaglia B, Adani F (2016) Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Biores Technol 218:692–699. https://doi.org/10.1016/j.biortech.2016.07.024

    Article  CAS  Google Scholar 

  15. Costa SS, Miranda AL, Andrade BB, de Assis DJ, Souza CO, de Morais MG, Costa JAV, Druzian JI2018) Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. Int J Biol Macromol 116: 552–562. https://doi.org/10.1016/j.ijbiomac.2018.05.064

  16. Cruz MV, Freitas F, Paiva A, Mano F, Dionísio M, Ramos AM, Reis MAM (2016) Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. New Biotechnol 33:206–215. https://doi.org/10.1016/j.nbt.2015.05.005

    Article  CAS  Google Scholar 

  17. Dormer A, Finn DP, Ward P, Cullen J (2013) Carbon footprint analysis in plastics manufacturing. J Clean Prod 51:133–141. https://doi.org/10.1016/j.jclepro.2013.01.014

    Article  CAS  Google Scholar 

  18. Elsa D, Castro-muñoz R (2021) Trends in chitosan as a primary biopolymer for functional films and coatings manufacture for food and natural products 1–24

    Google Scholar 

  19. Feng H, Zhang B, He Z, Wang S, Salih O, Wang Q (2018) Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil. Energy 155:1093–1101. https://doi.org/10.1016/j.energy.2018.02.146

    Article  CAS  Google Scholar 

  20. Fithriani D, Ambarwaty D, Nurhayati (2019) Identification of bioactive compounds from Nannochloropsis sp. In: IOP conference series: earth and environmental science. Institute of Physics Publishing, p 12064. https://doi.org/10.1088/1755-1315/404/1/012064

  21. Gasser E, Ballmann P, Dröge S, Bohn J, König H (2014) Microbial production of biopolymers from the renewable resource wheat straw. J Appl Microbiol 117:1035–1044. https://doi.org/10.1111/jam.12581

    Article  CAS  PubMed  Google Scholar 

  22. Global Bioplastics & Biopolymers Market Outlook 2020–2025, (n.d.) https://www.globenewswire.com/news-release/2020/04/17/2017839/0/en/Global-Bioplastics-Biopolymers-Market-Outlook-2020-2025.html (accessed April 15, 2021)

  23. Hao J, Qi B, Li D, Zeng F (2021) Catalytic co-pyrolysis of rice straw and ulva prolifera macroalgae: Effects of process parameter on bio-oil up-gradation. Renew Energy 164:460–471. https://doi.org/10.1016/j.renene.2020.09.056

  24. Hernández N, Williams RC, Cochran EW (2014) The battle for the “green” polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement. Organic and biomolecular chemistry. https://doi.org/10.1039/c3ob42339e

  25. Kamravamanesh D, Kovacs T, Pflügl S, Druzhinina I, Kroll P, Lackner M, Herwig C (2018) Increased poly-β-hydroxybutyrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: Mutant generation and characterization. Biores Technol 266:34–44. https://doi.org/10.1016/j.biortech.2018.06.057

    Article  CAS  Google Scholar 

  26. Karmee SK (2018) A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Manage. https://doi.org/10.1016/j.wasman.2017.10.042

    Article  Google Scholar 

  27. Kartik A, Akhil D, Lakshmi D, Panchamoorthy Gopinath K, Arun J, Sivaramakrishnan R, Pugazhendhi A (2021) A critical review on production of biopolymers from algae biomass and their applications. Biores Technol. https://doi.org/10.1016/j.biortech.2021.124868

    Article  Google Scholar 

  28. Kaya M, Baran T, Karaarslan M (2015) A new method for fast chitin extraction from shells of crab, crayfish and shrimp. Nat Prod Res 29:1477–1480. https://doi.org/10.1080/14786419.2015.1026341

    Article  CAS  PubMed  Google Scholar 

  29. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. https://doi.org/10.1186/s12934-018-0879-x

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koller M, Rodríguez-Contreras A (2015) Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra-and extracellular PHA. Eng Life Sci 15:558–581. https://doi.org/10.1002/elsc.201400228

    Article  CAS  Google Scholar 

  31. Liang S, McDonald AG, Coats ER (2014) Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture. Waste Manage 45:51–56. https://doi.org/10.1016/j.wasman.2015.02.004

    Article  CAS  Google Scholar 

  32. Lutzu GA, Ciurli A, Chiellini C, Di Caprio F, Concas A, Dunford NT (2021) Latest developments in wastewater treatment and biopolymer production by microalgae. J Environ Chem Eng 9:104926.https://doi.org/10.1016/j.jece.2020.104926

  33. Maraveas C (2020) Production of sustainable and biodegradable polymers from agricultural waste. Polymers 12:1127. https://doi.org/10.3390/polym12051127

    Article  CAS  PubMed Central  Google Scholar 

  34. Mohan S, Oluwafemi OS, Kalarikkal N, Thomas S, Songca SP (2016) Biopolymers–application in nanoscience and nanotechnology. In: Recent advances in biopolymers. InTech. https://doi.org/10.5772/62225

  35. Ortelli S, Costa AL, Torri C, Samorì C, Galletti P, Vineis C, Varesano A, Bonura L, Bianchi G (2019) Innovative and sustainable production of biopolymers. In: Factories of the future: the Italian flagship initiative. Springer International Publishing, pp 131–148. https://doi.org/10.1007/978-3-319-94358-9_6

  36. Prameela K, Venkatesh K, Vani KD, Sudesh Kumar E, Mohan CHM (2017) Eco-friendly extraction of biopolymer chitin and carotenoids from shrimp waste. in: IOP conference series: materials science and engineering. Institute of Physics Publishing, p 012266. https://doi.org/10.1088/1757-899X/225/1/012266

  37. Ranganathan S, Dutta S, Moses JA, Anandharamakrishnan C (2020) Utilization of food waste streams for the production of biopolymers. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04891

    Article  PubMed  PubMed Central  Google Scholar 

  38. Silva SS, Rodrigues LC, Fernandes EM, Reis RL (2020) Fundamentals on biopolymers and global demand. In: Biopolymer membranes and films. Elsevier, pp 3–34. https://doi.org/10.1016/b978-0-12-818134-8.00001-8

  39. Sofi HS, Akram T, Shabir N, Vasita R, Jadhav AH, Sheikh FA (2020) Regenerated cellulose nanofibers from cellulose acetate: incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Mater Sci Eng C 118:111547.https://doi.org/10.1016/j.msec.2020.111547

  40. Tapia-Blácido DR, Maniglia BC, Martelli-Tosi M (2017) Biopolymers from sugarcane and soybean lignocellulosic biomass. In: Sustainable polymers from biomass. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 227–253. https://doi.org/10.1002/9783527340200.ch10

  41. Tripathi L, Wu LP, Dechuan M, Chen J, Wu Q, Chen GQ (2013) Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions. Biores Technol 142:225–231. https://doi.org/10.1016/j.biortech.2013.05.027

    Article  CAS  Google Scholar 

  42. Vardhan V, Shiong K, Yi W, Wayne K, Siti H, Munawaroh H, Lam M, Lim J, Ho Y (2021) Bioresource technology algae biopolymer towards sustainable circular economy. Bioresour Technol 325:124702.https://doi.org/10.1016/j.biortech.2021.124702

  43. Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol. https://doi.org/10.1016/j.copbio.2014.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  44. Watanabe H, Li D, Nakagawa Y, Tomishige K, Kaya K, Watanabe MM (2014) Characterization of oil-extracted residue biomass of Botryococcus braunii as a biofuel feedstock and its pyrolytic behavior. Appl Energy 132:475–484. https://doi.org/10.1016/j.apenergy.2014.07.037

    Article  CAS  Google Scholar 

  45. Yahya E, Alias NH, Amran T, Mohd T, Ghazali NA, Suriya T, Taju B (2015) Flooding with biopolymer from microbes derived from mushroom and cabbage to enhance sweep efficiency in enhanced oil recovery. Adv Mater Res 1113:492–497. https://doi.org/10.4028/www.scientific.net/AMR.1113.492

    Article  Google Scholar 

  46. Zhang R, Yuen AKL, de Nys R, Masters AF, Maschmeyer T (2020) Step by step extraction of bio-actives from the brown seaweeds, Carpophyllum flexuosum, Carpophyllum plumosum, Ecklonia radiata and Undaria pinnatifida. Algal Res 52:102092. https://doi.org/10.1016/j.algal.2020.102092

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nur Hashimah Alias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alias, N.H., Abdullah, N., Othman, N.H., Marpani, F., Zainol, M.M., Shayuti, M.S.M. (2022). Sustainability Challenges and Future Perspectives of Biopolymer. In: Nadda, A.K., Sharma, S., Bhat, R. (eds) Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98392-5_17

Download citation

Publish with us

Policies and ethics