Skip to main content

Potential Applications of Biopolymers in Fisheries Industry

  • Chapter
  • First Online:
Biopolymers

Abstract

The exponential rise in fish-derived biopolymers in the form of nets, gears, food packaging material, lures and traps has revolutionized the fishing industry in the recent years. The promising usage and emerging market potential of biodegradable films has resulted in the circular economy. This chapter summarizes re-use of fish by-products such as chitin, chitosan, collagen, glycosaminoglycans, and hyaluronic acids in multiple applications. The raw fish-derived biomaterial from skin, scales, fins, and eyeballs has good flexibility, tensile strength, and viscosity; thus, commercially viable as a protective matrix. The fabricated fishery waste is recycled in an ecofriendly way to meet the growing market demand. Additionally, the prominent market players that utilizes fish-derived biopolymer to prepare daily essentials like toiletries, paper bags, food packaging material, bottles, textiles are enlisted. Further, various biopolymer typologies of fishery industry are described in detail based on the source of origin, physical appearance and their significant role in pharmaceutical, cosmeceutical, nutraceutical, nanotechnological, and food applications. However, due to some technological barriers in packaging material like film permeability, porosity, oxidation of lipids, discoloration etc. the bioproducts are still at lab-scale; that need to be addressed to reach industrial-scale. Moreover, the chapter discuss about the sustainable strategies to design fish binders, gill nets, fishing lines, traps etc. that should be transparent, fragile, dissolvable to avoid ghost fishing and capable to boost the ecological restoration of aquatic bodies. Finally, it covers the commercial aspect of the seafood industry, where the fishery biopolymer is used as an edible functional food, as a biodegradable preservative with enhanced shelf-life and as a bioadsorbent to remove toxic compounds. Over the last few years, the nanotechnological advancement of biopolymers and their blends have been exploited to treat wastewaters for reuse in seafood processing industry. Therefore, the hybrid polymers are considered environmentally safe and far superior to synthetic polymers if redesigned at molecular and nanoscale level to minimize the bioburden on aquatic life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santos VP, Marques NSS, Maia PCSV et al (2020) Seafood waste as attractive source of chitin and chitosan production and their applications. Int J Mol Sci 21:1–17

    Google Scholar 

  2. Ramakrishnan N, Sharma S, Gupta A et al (2018) Keratin based bioplastic film from chicken feathers and its characterization. Int J Biol Macromol 111:352–358. https://doi.org/10.1016/j.ijbiomac.2018.01.037

    Article  CAS  PubMed  Google Scholar 

  3. Sharma S, Gupta A, Chik SMST et al (2017) Characterization of keratin microparticles from feather biomass with potent antioxidant and anticancer activities. Int J Biol Macromol 104:189–196. https://doi.org/10.1016/j.ijbiomac.2017.06.015

    Article  CAS  PubMed  Google Scholar 

  4. Sharma S, Gupta A, Kumar A et al (2018) An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technol Environ Policy 20(10):2157–2167. https://doi.org/10.1007/s10098-018-1498-2

    Article  CAS  Google Scholar 

  5. Wankhade V (2020) Chapter 6-Animal-derived biopolymers in food and biomedical technology. In: Biopolymer-based formulations. Elsevier Inc.

    Google Scholar 

  6. MarinaTex, a biodegradable material that resembles plastic but doesn’t have its drawbacks. [Internet]. [Cited 2021 Apr 30]. https://www.livingcircular.veolia.com/en/inspirations/marinatex-bioplastic-sea

  7. The Shellworks recycles lobster shells to make bioplastic [Internet]. [Cited 2021 Apr 30]. https://www.livingcircular.veolia.com/en/inspirations/biodegradable-bags-made-recycled-lobster-shells

  8. Kalaivani R, Bakiyalakshmi S (2019) Neutraceutical preparation from Agaricus bisporus by value addition. Mushroom Res 28

    Google Scholar 

  9. Kaya M, Seyyar O, Baran T et al (2014) Bat guano as new and attractive chitin and chitosan source. Front Zool 11:59

    Article  Google Scholar 

  10. Mohapatra S, Maity S, Dash HR et al (2017) Bacillus and biopolymer: prospects and challenges. Biochem Biophys Reports. 12:206–213

    Article  Google Scholar 

  11. Van-Thuoc D, Quillaguamán J, Mamo G et al (2008) Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 104:420–428

    CAS  PubMed  Google Scholar 

  12. Brigham C (2018) Biopolymers: biodegradable alternatives to traditional plastics. In: Green chemistry. Elsevier Inc.

    Google Scholar 

  13. Ojha S, Singh D, Sett A et al (2018) Nanotechnology in crop protection. In: Nanomaterials in plants, algae, and microorganisms, pp 345–391

    Google Scholar 

  14. Enamala MK, Pasumarthy DS, Gandrapu PK et al (2019) Production of a variety of industrially significant products by biological sources through fermentation. In: Arora PK (ed) Microbial technology for the welfare of society. Springer Singapore, Singapore. pp 201–221. https://doi.org/10.1007/978-981-13-8844-6_9

  15. Kumaran S et al (2020) Trends in aquaculture feed development with chitosan nano particles–a review. Biosci Biotechnol Res Commun 13:73–78

    Google Scholar 

  16. Jujjavarapu SE, Chandrasekhar K, Naik S et al (2020) Sources of natural polymers from plants with green nanoparticles. In: Green polymeric nanocomposites, 1st ed. CRC Press, pp 81–102. [Cited 2021 May 1]. https://www.taylorfrancis.com/, https://www.taylorfrancis.com/chapters/edit/10.1201/9781351045155-4/sources-natural-polymers-plants-green-nanoparticles-satya-eswari-jujjavarapu-chandrasekhar-sweta-naik-aditya-toppo-veena-thakur

  17. Naik S, Chandrasekhar K, Jujjavarapu SE (2020) Synthesis of green polymeric nanocomposites using electrospinning. In: Green polymeric nanocomposites. CRC Press, pp 23–46. [Cited 2021 May 1]. https://www.taylorfrancis.com/https://www.taylorfrancis.com/chapters/edit/https://doi.org/10.1201/9781351045155-2/synthesis-green-polymeric-nanocomposites-using-electrospinning-sweta-naik-chandrasekhar-satya-eswari-jujjavarapu

  18. Chandrasekhar K, Eswari Jujjavarapu S, Kumar P et al (2020) Sources of natural polymers from microorganisms with green nanoparticles. In: Green polymeric nanocomposites. CRC Press, pp 103–132. [Cited 2021 May 1]. https://www.taylorfrancis.com/https://www.taylorfrancis.com/chapters/edit/https://doi.org/10.1201/9781351045155-5/sources-natural-polymers-microorganisms-green-nanoparticles-chandrasekhar-satya-eswari-jujjavarapu-prasun-kumar-gopalakrishnan-kumar-potla-durthi-chandrasai-enamala-manoj-kumar-murthy-chavali

  19. Jafari H, Lista A, Siekapen MM et al (2020) Fish collagen: extraction, characterization, and applications for biomaterials engineering. Polymers (Basel) 1–37

    Google Scholar 

  20. Chakravarty J, Yang CL, Palmer J et al (2018) Chitin extraction from lobster shell waste using microbial culture-based methods. Appl Food Biotechnol. 5:141–154

    CAS  Google Scholar 

  21. Bioplastics & Biopolymers Market Global Forecast to 2025 | MarketsandMarkets [Internet]. [Cited 2021 Apr 30]. https://www.marketsandmarkets.com/Market-Reports/biopolymers-bioplastics-market-88795240.html

  22. Aggarwal J, Sharma S, Kamyab H et al (2020) The realm of biopolymers and their usage: an overview. J Environ Treat Tech 8(3):1005–1016

    Google Scholar 

  23. Nisticò R (2017) Aquatic-derived biomaterials for a sustainable future: a European opportunity. Resources 6:1–15

    Article  Google Scholar 

  24. Caldeira M, Barreto C, Pestana P et al (2018) CODEN (USA): JSERBR fish residue valorisation by the production of value- added compounds towards a sustainable zero waste industry: a critical review. J Sci Eng Res 5(4):418–447. www.jsaer.com

  25. Nawaz A, Li E, Irshad S et al (2020) Valorization of fisheries by-products: challenges and technical concerns to food industry. Trends Food Sci Technol 99:34–43

    Article  CAS  Google Scholar 

  26. Ahuja H, Dhapola PS, Rahul et al (2020) Ionic liquid (1-hexyl-3-methylimidazolium iodide)-incorporated biopolymer electrolyte for efficient supercapacitor. High Perform Polym 32:220–225. https://doi.org/10.1177/0954008319897763

  27. Aggarwal J, Sharma S, Kamyab H et al (2020) The realm of biopolymers and their usage: an overview. J Environ Treat Tech. 8:1005–1016

    Google Scholar 

  28. Alashwal BY, Saad Bala M, Gupta A et al (2020) Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: a comparative analysis. J King Saud Univ Sci 32(1):853–857. https://doi.org/10.1016/j.jksus.2019.03.006

    Article  Google Scholar 

  29. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8. http://www.progressbiomaterials.com/content/2/1/8

  30. Yadav P (2015) Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. J Clin DIAGNOSTIC Res 9:21–25. http://jcdr.net/article_fulltext.asp?issn=0973-709x&year=2015&volume=9&issue=9&page=ZE21&issn=0973-709x&id=6565

  31. Kawalkar A (2015) A comprehensive review on osteoporosis. J Trauma 10:3–12

    Google Scholar 

  32. Mariod AA, Adam HF (2013) Review: gelatin, source, extraction and industrial applications. Acta Sci Pol Technol Aliment 12:135–147

    CAS  Google Scholar 

  33. Vazquez JA, Montemayor MI, Fraguas J et al (2010) Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera. Microb Cell Fact 9:46. http://microbialcellfactories.biomedcentral.com/articles/https://doi.org/10.1186/1475-2859-9-46

  34. Vázquez JA, Montemayor MI, Fraguas J et al (2009) High production of hyaluronic and lactic acids by Streptococcus zooepidemicus in fed-batch culture using commercial and marine peptones from fishing by-products. Biochem Eng J 44:125–130

    Article  Google Scholar 

  35. Murado MA, Montemayor MI, Cabo ML et al (2012) Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod Process 90:491–498. https://doi.org/10.1016/j.fbp.2011.11.002

  36. Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res. [Cited 2021 Apr 30] 4:411–427. http://www.ncbi.nlm.nih.gov/pubmed/27819009

  37. Raafat D, Sahl H-G (2009) Chitosan and its antimicrobial potential–a critical literature survey. Microb Biotechnol 2:186–201. http://www.ncbi.nlm.nih.gov/pubmed/21261913

  38. Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51

    Article  CAS  Google Scholar 

  39. Owonubi SJ, Agwuncha SC, Fasiku VO et al (2017) Biomedical applications of polyolefins. In: Polyolefin fibres. Elsevier, pp 517–538. https://linkinghub.elsevier.com/retrieve/pii/B9780081011324000175

  40. Harkness RD (1961) Biological functions of collagen. Biol Rev. [Cited 2021 Apr 30] 36:399–455. https://doi.org/10.1111/j.1469-185X.1961.tb01596.x

  41. Maeda M, Tani S, Sano A et al (1999) Microstructure and release characteristics of the minipellet, a collagen-based drug delivery system for controlled release of protein drugs. J Control Release 62:313–324. http://www.ncbi.nlm.nih.gov/pubmed/10528069

  42. Ramos M, Valdés A, Beltrán A et al (2016) Gelatin-based films and coatings for food packaging applications. Coatings 6:41. https://www.mdpi.com/2079-6412/6/4/41

  43. Boeriu CG, Springer J, Kooy FK et al (2013) Production methods for hyaluronan. Int J Carbohydr Chem 2013:1–14

    Article  Google Scholar 

  44. Gallo N, Nasser H, Salvatore L et al (2019) Hyaluronic acid for advanced therapies: promises and challenges. Eur Polym J 117:134–147. http://www.sciencedirect.com/science/article/pii/S0014305719306895

  45. Sumogod A, Nacional L, Nillos MG et al (2020) Isolation of hyaluronic acid from yellowfin tuna thunnus albacares (Bonnaterre, 1788) eyeball. Asian Fish Sci 33:1–9

    Google Scholar 

  46. Kim S, Kim P, Lim J et al (2016) Use of biodegradable driftnets to prevent ghost fishing: physical properties and fishing performance for yellow croaker. Anim Conserv 19:309–319

    Article  Google Scholar 

  47. Tokiwa Y, Calabia BP, Ugwu CU et al (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742

    Article  CAS  Google Scholar 

  48. Kim SG, Lee WIL, Yuseok M (2014) The estimation of derelict fishing gear in the coastal waters of South Korea: trap and gill-net fisheries. Mar Policy 46:119–122

    Article  Google Scholar 

  49. Deshpande PC, Philis G, Brattebø H et al (2020) Using material flow analysis (MFA) to generate the evidence on plastic waste management from commercial fishing gears in Norway. Resour Conserv Recycl X 5:100024. https://doi.org/10.1016/j.rcrx.2019.100024

  50. Biodegradable fishing nets-My Green Pod | Sustainable Products & News. [Cited 2021 Apr 30]. https://www.mygreenpod.com/articles/biodegradable-fishing-nets/

  51. Fao. Abandoned, lost and discarded gillnets and trammel nets

    Google Scholar 

  52. Anderson JA, Alford AB (2014) Ghost fishing activity in derelict blue crab traps in Louisiana. Mar Pollut Bull 79:261–267. https://doi.org/10.1016/j.marpolbul.2013.12.002

  53. Niaounakis M (2015) Agriculture/Forestry/Fishery. Biopolym Appl Trends

    Google Scholar 

  54. Ganesan AR, Saravana Guru M, Balasubramanian B et al (2020) Biopolymer from edible marine invertebrates: a potential functional food. J King Saud Univ Sci 32:1772–1777. https://www.sciencedirect.com/science/article/pii/S1018364720300173

  55. Islam S, Bhuiyan MAR, Islam MN (2017) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25:854–866. https://doi.org/10.1007/s10924-016-0865-5.

  56. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. https://www.sciencedirect.com/science/article/pii/S1381514800000389

  57. Aranaz I, Mengíbar M, Harris R et al (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3:203–230

    CAS  Google Scholar 

  58. Kumar R, Xavier KAM, Lekshmi M et al (2018) Fortification of extruded snacks with chitosan: effects on techno functional and sensory quality. Carbohydr Polym 194:267–273. https://www.sciencedirect.com/science/article/pii/S0144861718304363

  59. Kuprina EE, Kiprushkina EI, Shestopalova IA et al (2018) Research of the influence of chitin-containing food additives on the rheological properties and biological value of minced fish. Prog Chem Appl Chitin its Deriv. 23:114–119

    CAS  Google Scholar 

  60. Azuma K, Ifuku S (2016) Nanofibers based on chitin: a new functional food. Pure Appl Chem 88:605–619. https://doi.org/10.1515/pac-2016-0504

  61. Xie C, Guo X, Long C et al (2015) Supplementation of the sow diet with chitosan oligosaccharide during late gestation and lactation affects hepatic gluconeogenesis of suckling piglets. Anim Reprod Sci 159:109–117. https://www.sciencedirect.com/science/article/pii/S0378432015001359

  62. Rahimnejad S, Yuan X, Wang L et al (2018) Chitooligosaccharide supplementation in low-fish meal diets for Pacific white shrimp (Litopenaeus vannamei): effects on growth, innate immunity, gut histology, and immune-related genes expression. Fish Shellfish Immunol 80:405–415. https://www.sciencedirect.com/science/article/pii/S1050464818303668

  63. Crini G, Lichtfouse E (2019) Sustainable agriculture reviews 36: chitin and chitosan: applications in food, agriculture, pharmacy, medicine and wastewater treatment. Springer

    Google Scholar 

  64. Borderías AJ, Sánchez-Alonso I, Pérez-Mateos M (2005) New applications of fibres in foods: addition to fishery products. Trends Food Sci Technol 16:458–465. https://www.sciencedirect.com/science/article/pii/S0924224405000750

  65. Li QP, Gooneratne SR, Wang RL et al (2016) Effect of different molecular weight of chitosans on performance and lipid metabolism in chicken. Anim Feed Sci Technol 211:174–180. https://www.sciencedirect.com/science/article/pii/S0377840115300699

  66. Qinna NA, Akayleh FT, Al Remawi MM et al (2013) Evaluation of a functional food preparation based on chitosan as a meal replacement diet. J Funct Foods 5:1125–1134. https://www.sciencedirect.com/science/article/pii/S1756464613000789

  67. Anandan R, Ganesan B, Obulesu T et al (2012) Dietary chitosan supplementation attenuates isoprenaline-induced oxidative stress in rat myocardium. Int J Biol Macromol 51:783–787. https://www.sciencedirect.com/science/article/pii/S0141813012002899

  68. Nsor-Atindana J, Chen M, Goff HD et al (2017) Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydr Polym 172:159–174. https://www.sciencedirect.com/science/article/pii/S0144861717304058

  69. Ghanbarzadeh B, Almasi H, Entezami AA (2010) Physical properties of edible modified starch/carboxymethyl cellulose films. Innov Food Sci Emerg Technol 11:697–702. https://www.sciencedirect.com/science/article/pii/S1466856410000640

  70. Adel AM, El-shinnawy NA (2012) Hypolipidemic applications of microcrystalline cellulose composite synthesized from different agricultural residues. Int J Biol Macromol 51:1091–1102. https://www.sciencedirect.com/science/article/pii/S014181301200308X

  71. Bartley GE, Yokoyama W, Young SA et al (2010) Hypocholesterolemic effects of hydroxypropyl methylcellulose are mediated by altered gene expression in hepatic bile and cholesterol pathways of male hamsters. J Nutr 140:1255–1260. https://doi.org/10.3945/jn.109.118349

  72. Khan A, Wen Y, Huq T et al (2018) Cellulosic nanomaterials in food and nutraceutical applications: a review. J Agric Food Chem 66:8–19. https://doi.org/10.1021/acs.jafc.7b04204

  73. Shi Z, Zhang Y, Phillips GO et al (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545. https://www.sciencedirect.com/science/article/pii/S0268005X13002142

  74. Inanli AG, Tümerkan ETA, Abed N El et al (2020) The impact of chitosan on seafood quality and human health: a review. Trends Food Sci Technol 97:404–416. https://www.sciencedirect.com/science/article/pii/S0924224419303000

  75. Morganti P (2013) Commentary innovation, nanotechnology and industrial sustainability by the use of natural underutilized byproducts 0–4

    Google Scholar 

  76. Gan I, Chow WS (2018) Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: a review. Food Packag Shelf Life 17:150–161. https://www.sciencedirect.com/science/article/pii/S2214289418300474

  77. Kong M, Chen XG, Xing K et al (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63. https://www.sciencedirect.com/science/article/pii/S0168160510005167

  78. Alishahi A, Aïder M (2012) Applications of chitosan in the seafood industry and aquaculture: a review. Food Bioprocess Technol 5:817–830. https://doi.org/10.1007/s11947-011-0664-x

  79. Sathivel S (2005) Chitosan and protein coatings affect yield, moisture loss, and lipid oxidation of pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. J Food Sci 70:e455–e459. https://doi.org/10.1111/j.1365-2621.2005.tb11514.x

  80. R.G. Kumar L, Chatterjee NS, Tejpal CS et al (2017) Evaluation of chitosan as a wall material for microencapsulation of squalene by spray drying: characterization and oxidative stability studies. Int J Biol Macromol 104:1986–1995. https://www.sciencedirect.com/science/article/pii/S0141813016326988

  81. Benjakul S, Visessanguan W, Tanaka M et al (2001) Effect of chitin and chitosan on gelling properties of surimi from barred garfish (Hemiramphus far). J Sci Food Agric 81:102–108. https://doi.org/10.1002/1097-0010(20010101)81:1%3C102::AID-JSFA792%3E3.0.CO

  82. Kok tn, park jaew (2007) Extending the shelf life of set fish ball. J Food Qual 30:1–27. https://doi.org/10.1111/j.1745-4557.2007.00103.x

  83. Ye M, Neetoo H, Chen H (2008) Effectiveness of chitosan-coated plastic films incorporating antimicrobials in inhibition of Listeria monocytogenes on cold-smoked salmon. Int J Food Microbiol 127:235–240. https://www.sciencedirect.com/science/article/pii/S0168160508003942

  84. Mohan CO, Ravishankar CN, Lalitha KV et al (2012) Effect of chitosan edible coating on the quality of double filleted Indian oil sardine (Sardinella longiceps) during chilled storage. Food Hydrocoll 26:167–174. https://www.sciencedirect.com/science/article/pii/S0268005X11001603

  85. Li T, Hu W, Li J et al (2012) Coating effects of tea polyphenol and rosemary extract combined with chitosan on the storage quality of large yellow croaker (Pseudosciaena crocea). Food Control 25:101–106. https://www.sciencedirect.com/science/article/pii/S0956713511004336

  86. Yu D, Li P, Xu Y et al (2017) Physicochemical, microbiological, and sensory attributes of chitosan-coated grass carp (Ctenopharyngodon idellus) fillets stored at 4 °C. Int J Food Prop 20:390–401. https://doi.org/10.1080/10942912.2016.1163267

  87. Bonilla F, Chouljenko A, Reyes V et al (2018) Impact of chitosan application technique on refrigerated catfish fillet quality. LWT 90:277–282. https://www.sciencedirect.com/science/article/pii/S0023643817308897

  88. Qiu X, Chen S, Liu G et al (2014) Quality enhancement in the Japanese sea bass (Lateolabrax japonicas) fillets stored at 4 °C by chitosan coating incorporated with citric acid or licorice extract. Food Chem 162:156–160. https://www.sciencedirect.com/science/article/pii/S0308814614005834

  89. Warwick C, Guerreiro A, Soares A (2013) Sensing and analysis of soluble phosphates in environmental samples: a review. Biosens Bioelectron 41:1–11. https://www.sciencedirect.com/science/article/pii/S0956566312004526

  90. Chandrasekhar K, Kumar G, Venkata Mohan S et al (2020) Microbial Electro-Remediation (MER) of hazardous waste in aid of sustainable energy generation and resource recovery. Environ Technol Innov 100997. [Cited 2020 Oct 2] https://linkinghub.elsevier.com/retrieve/pii/S2352186420308026

  91. Park J, Chandrasekhar K, Jeon B et al (2021) State-of-the-art technologies for continuous high-rate biohydrogen production. Bioresour Technol 320:124304. [Cited 2020 Oct 30] https://linkinghub.elsevier.com/retrieve/pii/S0960852420315789

  92. Venkata Mohan S, Chiranjeevi P, Chandrasekhar K et al (2019) Acidogenic biohydrogen production from wastewater. In: Pandey A, Mohan SV, Chang J-S et al (eds) Biohydrogen. Elsevier, pp 279–320. http://www.sciencedirect.com/science/article/pii/B9780444642035000113

  93. Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Colloid Interface Sci 152:26–38. https://www.sciencedirect.com/science/article/pii/S0001868609000888

  94. Chandrasekhar K, Velvizhi G, Mohan SV (2021) Bio-electrocatalytic remediation of hydrocarbons contaminated soil with integrated natural attenuation and chemical oxidant. Chemosphere 130649. [Cited 2021 May 1] https://linkinghub.elsevier.com/retrieve/pii/S0045653521011206

  95. Gambino E, Chandrasekhar K, Nastro RA (2021) SMFC as a tool for the removal of hydrocarbons and metals in the marine environment: a concise research update. Environ Sci Pollut Res 1–16. [Cited 2021 Apr 28] https://doi.org/10.1007/s11356-021-13593-3

  96. Chandrasekhar K, Naresh Kumar A, Kumar G et al (2021) Electro-fermentation for biofuels and biochemicals production: current status and future directions. Bioresour Technol 323:124598

    Google Scholar 

  97. Chandrasekhar K, Cayetano RDA, Mehrez I et al (2020) Evaluation of the biochemical methane potential of different sorts of Algerian date biomass. Environ Technol Innov 20:101180. https://linkinghub.elsevier.com/retrieve/pii/S2352186420314802

  98. Flagiello F, Gambino E, Nastro RA et al (2020) Harvesting energy using compost as a source of carbon and electrogenic bacteria. Bioelectrochem Syst

    Google Scholar 

  99. Crini G, Lichtfouse E, Wilson LD et al (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8

  100. Zeng EY (2018) Microplastic contamination in aquatic environments: an emerging matter of environmental urgency. Elsevier

    Google Scholar 

  101. Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50. https://www.sciencedirect.com/science/article/pii/S0924224415002721

  102. Dandil S, Akin Sahbaz D, Acikgoz C (2019) Adsorption of Cu(II) ions onto crosslinked chitosan/Waste Active Sludge Char (WASC) beads: kinetic, equilibrium, and thermodynamic study. Int J Biol Macromol 136:668–675. https://www.sciencedirect.com/science/article/pii/S0141813018371289

  103. González JA, Bafico JG, Villanueva ME et al (2018) Continuous flow adsorption of ciprofloxacin by using a nanostructured chitin/graphene oxide hybrid material. Carbohydr Polym 188:213–220. https://www.sciencedirect.com/science/article/pii/S0144861718301590

  104. Sharififard H, Zokaee Ashtiani F, Soleimani M (2013) Adsorption of palladium and platinum from aqueous solutions by chitosan and activated carbon coated with chitosan. Asia-Pacific J Chem Eng 8:384–395. https://doi.org/10.1002/apj.1671

  105. Pambi R-L, Musonge P (2015) The efficiency of chitosan as a coagulant in the treatment of the effluents from the Sugar Industry. J Polym Mater. [Cited 2021 Apr 30] https://openscholar.dut.ac.za/handle/10321/2380

  106. Crini G, Badot P-M (2009) Guibal ric. Chitine et chitosane : du biopolymre l’application. Presses Universitaires de Franche-Comt, Paris

    Google Scholar 

  107. Ahmad AL, Sumathi S, Hameed BH (2005) Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: equilibrium and kinetic studies. Water Res 39:2483–2494. https://www.sciencedirect.com/science/article/pii/S0043135405001296

  108. Altaher H (2012) The use of chitosan as a coagulant in the pre-treatment of turbid sea water. J Hazard Mater 233–234:97–102. https://www.sciencedirect.com/science/article/pii/S0304389412007042

  109. Dima JB, Sequeiros C, Zaritzky NE (2015) Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes. Chemosphere 141:100–111. https://www.sciencedirect.com/science/article/pii/S0045653515006499

  110. Gopi S, Balakrishnan P, Divya C et al (2017) Facile synthesis of chitin nanocrystals decorated on 3D cellulose aerogels as a new multi-functional material for waste water treatment with enhanced anti-bacterial and anti-oxidant properties. New J Chem 41:12746–12755. https://doi.org/10.1039/C7NJ02392H

  111. Albukhari SM, Ismail M, Akhtar K et al (2019) Catalytic reduction of nitrophenols and dyes using silver nanoparticles @ cellulose polymer paper for the resolution of waste water treatment challenges. Colloids Surfaces A Physicochem Eng Asp 577:548–561. https://www.sciencedirect.com/science/article/pii/S0927775719304789

  112. Zhou S, Xia L, Fu Z et al (2021) Purification of dye-contaminated ethanol-water mixture using magnetic cellulose powders derived from agricultural waste biomass. Carbohydr Polym 258:117690. https://www.sciencedirect.com/science/article/pii/S0144861721000771

  113. Garcia LF, Lacerda MFAR, Thomaz DV et al (2019) Optimization of laccase–alginate–chitosan-based matrix toward 17 α-ethinylestradiol removal. Prep Biochem Biotechnol 49:375–383. https://doi.org/10.1080/10826068.2019.1573195

  114. Wang J, Zhou Y, Shao Y et al (2019) Chitosan–silica nanoparticles catalyst (M@CS–SiO2) for the degradation of 1,1-dimethylhydrazine. Res Chem Intermed 45:1721–1735. https://doi.org/10.1007/s11164-018-3697-1

  115. Mwafy EA, Mostafa AM (2020) Tailored MWCNTs/SnO2 decorated cellulose nanofiber adsorbent for the removal of Cu (II) from waste water. Radiat Phys Chem 177:109172. https://www.sciencedirect.com/science/article/pii/S0969806X20308938

  116. Ilangovan M, Guna V, Olivera S et al (2017) Highly porous carbon from a natural cellulose fiber as high efficiency sorbent for lead in waste water. Bioresour Technol 245:296–299. https://www.sciencedirect.com/science/article/pii/S0960852417314554

  117. Xie K, Jing L, Zhao W et al (2011) Adsorption removal of Cu2+ and Ni2+ from waste water using nano-cellulose hybrids containing reactive polyhedral oligomeric silsesquioxanes. J Appl Polym Sci 122:2864–2868. https://doi.org/10.1002/app.34411

  118. Li F, Wang B, Pang Z et al (2018) Application of cellulose-based solid acid in absorption of heavy metal ions from printing waste water BT In: Zhao P, Ouyang Y, Xu M et al (eds) Applied sciences in graphic communication and packaging. Springer Singapore, Singapore, pp 893–900

    Google Scholar 

  119. Putri CA, Yulianti I, Desianna I et al (2018) Water hyacinth cellulose-based membrane for adsorption of liquid waste dyes and chromium. J Phys Conf Ser 1008

    Google Scholar 

  120. Lin Z, Chen L, Ye Z et al (2021) Film-like chitin/polyethylenimine biosorbent for highly efficient removal of uranyl-carbonate compounds from water. J Environ Chem Eng 9:105340. https://www.sciencedirect.com/science/article/pii/S2213343721003171

  121. Yousefi N, Jones M, Bismarck A et al (2021) Fungal chitin-glucan nanopapers with heavy metal adsorption properties for ultrafiltration of organic solvents and water. Carbohydr Polym 253:117273. https://www.sciencedirect.com/science/article/pii/S0144861720314466

  122. Wang B, Bai Z, Jiang H et al (2019) Selective heavy metal removal and water purification by microfluidically-generated chitosan microspheres: characteristics, modeling and application. J Hazard Mater 364:192–205. https://www.sciencedirect.com/science/article/pii/S0304389418309312

  123. Pérez Mora BE, Bellú SE, Mangiameli MF et al (2019) Optimization of continuous arsenic biosorption present in natural contaminated groundwater. J Chem Technol Biotechnol 94:547–555. https://doi.org/10.1002/jctb.5801

  124. Türker OC, Baran T (2018) A combination method based on chitosan adsorption and duckweed (Lemna gibba L.) phytoremediation for boron (B) removal from drinking water. Int J Phytoremed 20:175–183. https://doi.org/10.1080/15226514.2017.1350137

  125. Azzam EMS, Eshaq G, Rabie AM et al (2016) Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu(II) from aqueous solution. Int J Biol Macromol 89:507–517. https://www.sciencedirect.com/science/article/pii/S0141813016304093

  126. Aslani H, Ebrahimi Kosari T, Naseri S et al (2018) Hexavalent chromium removal from aqueous solution using functionalized chitosan as a novel nano-adsorbent: modeling and optimization, kinetic, isotherm, and thermodynamic studies, and toxicity testing. Environ Sci Pollut Res 25:20154–20168. https://doi.org/10.1007/s11356-018-2023-1

  127. Sangeetha K, Angelin Vinodhini P, Sudha PN et al (2019) Novel chitosan based thin sheet nanofiltration membrane for rejection of heavy metal chromium. Int J Biol Macromol 132:939–953. https://www.sciencedirect.com/science/article/pii/S0141813019309766

Download references

Acknowledgements

The authors would like to express their gratitude to Head, Department of Botany, The M.S. University of Baroda for administrative and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chandrasekhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, M., Unadkat, K., Kapoor, S., Enamala, M.K., Parikh, P., Chandrasekhar, K. (2022). Potential Applications of Biopolymers in Fisheries Industry. In: Nadda, A.K., Sharma, S., Bhat, R. (eds) Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98392-5_10

Download citation

Publish with us

Policies and ethics