Abstract
In this paper, we describe a novel approach to the prediction of human blood glucose levels by analysing rich biometric human contextual data from a pioneering lifelog dataset. Numerous prediction models (RF, SVM, XGBoost and Elastic-Net) along with different combinations of input attributes are compared. An efficient ensemble method of stacking of multiple combination of prediction models was also implemented as our contribution. It was found that XGBoost outperformed three other models and that a stacking ensemble method further improved the performance.
Keywords
- Blood glucose
- Lifelogging
- Human context
This is a preview of subscription content, access via your institution.
Buying options



References
U.S. Department of Agriculture, A.R.S.: Food and nutrient database for dietary studies (fndds). In: FoodData Central. Food Surveys Research Group, Beltsville Human Nutrition Research Center (2017). http://www.ars.usda.gov/nea/bhnrc/fsrg
Alfian, G., et al.: Blood glucose prediction model for type 1 diabetes based on artificial neural network with time-domain features. Biocybernetics Biomed. Eng. 40(4), 1586–1599 (2020). https://doi.org/10.1016/j.bbe.2020.10.004, https://www.sciencedirect.com/science/article/pii/S0208521620301248
Alfian, G., Syafrudin, M., Rhee, J., Anshari, M., Mustakim, M., Fahrurrozi, I.: Blood glucose prediction model for type 1 diabetes based on extreme gradient boosting. In: IOP Conference Series: Materials Science and Engineering, vol. 803, p. 012012, May 2020. https://doi.org/10.1088/1757-899x/803/1/012012
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324, http://dx.doi.org/10.1023/A%3A1010933404324
Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2939672.2939785
Georga, E.I., Protopappas, V.C., Polyzos, D., Fotiadis, D.I.: Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models. Med. Biol. Eng. Comput. 53(12), 1305–1318 (2015). https://doi.org/10.1007/s11517-015-1263-1
Georga, E.I., Protopappas, V.C., Ardigò, D., Polyzos, D., Fotiadis, D.I.: A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions. Diab. Technol. Ther. 15(8), 634–643 (2013). https://doi.org/10.1089/dia.2012.0285
Goetsch, V.L., Wiebe, D.J., Veltum, L.G., van Dorsten, B.: Stress and blood glucose in type ii diabetes mellitus. Behav. Res. Ther. 28(6), 531–537 (1990). https://doi.org/10.1016/0005-7967(90)90140-E, https://www.sciencedirect.com/science/article/pii/000579679090140E
Gurrin, C., et al.: Advances in lifelog data organisation and retrieval at the NTCIR-14 lifelog-3 task. In: Kato, M.P., Liu, Y., Kando, N., Clarke, C.L.A. (eds.) NTCIR 2019. LNCS, vol. 11966, pp. 16–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36805-0_2
Gurrin, C., Smeaton, A.F., Doherty, A.R.: Lifelogging: personal big data. Found. Trends\(\text{\textregistered} \) Inf. Retrieval 8(1), 1–125 (2014). https://doi.org/10.1561/1500000033, http://dx.doi.org/10.1561/1500000033
Idriss, T.E., Idri, A., Abnane, I., Bakkoury, Z.: Predicting blood glucose using an LSTM neural network. In: 2019 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 35–41 (2019). https://doi.org/10.15439/2019F159
Manohar, C., et al.: The effect of walking on postprandial glycemic excursion in patients with type 1 diabetes and healthy people. Diabetes Care 35(12), 2493–2499 (2012)
Marcus, Y., et al.: Improving blood glucose level predictability using machine learning. Diabetes/Metab. Res. Rev. 36(8), e3348 (2020). https://doi.org/10.1002/dmrr.3348, https://onlinelibrary.wiley.com/doi/abs/10.1002/dmrr.3348
Martinsson, J., Schliep, A., Eliasson, B., Mogren, O.: Blood glucose prediction with variance estimation using recurrent neural networks. J. Healthcare Inf. Res. 4(1), 1–18 (2019). https://doi.org/10.1007/s41666-019-00059-y
Meyer, J., Simske, S., Siek, K.A., Gurrin, C.G., Hermens, H.: Beyond quantified self: data for wellbeing. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2014, pp. 95–98. Association for Computing Machinery, New York (2014)
Munoz-Organero, M.: Deep physiological model for blood glucose prediction in t1dm patients. Sensors 20(14) (2020). https://doi.org/10.3390/s20143896 ,https://www.mdpi.com/1424-8220/20/14/3896
Suresh, M., Taib, R., Zhao, Y., Jin, W.: Sharpening the BLADE: missing data imputation using supervised machine learning. In: Liu, J., Bailey, J. (eds.) AI 2019. LNCS (LNAI), vol. 11919, pp. 215–227. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35288-2_18
Swan, M.: The quantified self: fundamental disruption in big data science and biological discovery. Big data 1(2), 85–99 (2013)
Takeuchi, H., Kodama, N., Tsurumi, K.: Time-series data analysis of blood-sugar level of a diabetic in relationship to lifestyle events. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5195–5198 (2009). https://doi.org/10.1109/IEMBS.2009.5334582
Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with java implementations. SIGMOD Rec. 31(1), 76–77 (2002). https://doi.org/10.1145/507338.507355
Woldaregay, A.Z., et al.: Data-driven modeling and prediction of blood glucose dynamics: machine learning applications in type 1 diabetes. Artif. Intell. Med. 98, 109–134 (2019)
Zanon, M., Sparacino, G., Facchinetti, A., Talary, M.S., Caduff, A., Cobelli, C.: Regularised model identification improves accuracy of multisensor systems for noninvasive continuous glucose monitoring in diabetes management. J. Appl. Math. 2013(SI05), 1 – 10 (2013). https://doi.org/10.1155/2013/793869
Zarkogianni, K., et al.: Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring. Med. Biol. Eng. Comput. 53(12), 1333–1343 (2015). https://doi.org/10.1007/s11517-015-1320-9
Zecchin, C., Facchinetti, A., Sparacino, G., Cobelli, C.: Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput. Methods Program. Biomed. 113(1), 144–152 (2014). https://doi.org/10.1016/j.cmpb.2013.09.016, https://www.sciencedirect.com/science/article/pii/S0169260713003234
Zecchin, C., et al.: Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring. Diabetes Tech. Ther. 15(10), 836–844 (2013). https://doi.org/10.1089/dia.2013.0105, pMID: 23944973
Zecchin, C., Facchinetti, A., Sparacino, G., De Nicolao, G., Cobelli, C.: Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans. Biomed. Eng. 59(6), 1550–1560 (2012). https://doi.org/10.1109/TBME.2012.2188893
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Palbar, T., Kesavulu, M., Gurrin, C., Verbruggen, R. (2022). Prediction of Blood Glucose Using Contextual LifeLog Data. In: , et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13141. Springer, Cham. https://doi.org/10.1007/978-3-030-98358-1_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-98358-1_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98357-4
Online ISBN: 978-3-030-98358-1
eBook Packages: Computer ScienceComputer Science (R0)