Skip to main content

Prediction of Blood Glucose Using Contextual LifeLog Data

  • 1344 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13141)

Abstract

In this paper, we describe a novel approach to the prediction of human blood glucose levels by analysing rich biometric human contextual data from a pioneering lifelog dataset. Numerous prediction models (RF, SVM, XGBoost and Elastic-Net) along with different combinations of input attributes are compared. An efficient ensemble method of stacking of multiple combination of prediction models was also implemented as our contribution. It was found that XGBoost outperformed three other models and that a stacking ensemble method further improved the performance.

Keywords

  • Blood glucose
  • Lifelogging
  • Human context

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-98358-1_32
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-98358-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. U.S. Department of Agriculture, A.R.S.: Food and nutrient database for dietary studies (fndds). In: FoodData Central. Food Surveys Research Group, Beltsville Human Nutrition Research Center (2017). http://www.ars.usda.gov/nea/bhnrc/fsrg

  2. Alfian, G., et al.: Blood glucose prediction model for type 1 diabetes based on artificial neural network with time-domain features. Biocybernetics Biomed. Eng. 40(4), 1586–1599 (2020). https://doi.org/10.1016/j.bbe.2020.10.004, https://www.sciencedirect.com/science/article/pii/S0208521620301248

  3. Alfian, G., Syafrudin, M., Rhee, J., Anshari, M., Mustakim, M., Fahrurrozi, I.: Blood glucose prediction model for type 1 diabetes based on extreme gradient boosting. In: IOP Conference Series: Materials Science and Engineering, vol. 803, p. 012012, May 2020. https://doi.org/10.1088/1757-899x/803/1/012012

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324, http://dx.doi.org/10.1023/A%3A1010933404324

  5. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2939672.2939785

  6. Georga, E.I., Protopappas, V.C., Polyzos, D., Fotiadis, D.I.: Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models. Med. Biol. Eng. Comput. 53(12), 1305–1318 (2015). https://doi.org/10.1007/s11517-015-1263-1

    CrossRef  Google Scholar 

  7. Georga, E.I., Protopappas, V.C., Ardigò, D., Polyzos, D., Fotiadis, D.I.: A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions. Diab. Technol. Ther. 15(8), 634–643 (2013). https://doi.org/10.1089/dia.2012.0285

  8. Goetsch, V.L., Wiebe, D.J., Veltum, L.G., van Dorsten, B.: Stress and blood glucose in type ii diabetes mellitus. Behav. Res. Ther. 28(6), 531–537 (1990). https://doi.org/10.1016/0005-7967(90)90140-E, https://www.sciencedirect.com/science/article/pii/000579679090140E

  9. Gurrin, C., et al.: Advances in lifelog data organisation and retrieval at the NTCIR-14 lifelog-3 task. In: Kato, M.P., Liu, Y., Kando, N., Clarke, C.L.A. (eds.) NTCIR 2019. LNCS, vol. 11966, pp. 16–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36805-0_2

    CrossRef  Google Scholar 

  10. Gurrin, C., Smeaton, A.F., Doherty, A.R.: Lifelogging: personal big data. Found. Trends\(\text{\textregistered} \) Inf. Retrieval 8(1), 1–125 (2014). https://doi.org/10.1561/1500000033, http://dx.doi.org/10.1561/1500000033

  11. Idriss, T.E., Idri, A., Abnane, I., Bakkoury, Z.: Predicting blood glucose using an LSTM neural network. In: 2019 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 35–41 (2019). https://doi.org/10.15439/2019F159

  12. Manohar, C., et al.: The effect of walking on postprandial glycemic excursion in patients with type 1 diabetes and healthy people. Diabetes Care 35(12), 2493–2499 (2012)

    CrossRef  Google Scholar 

  13. Marcus, Y., et al.: Improving blood glucose level predictability using machine learning. Diabetes/Metab. Res. Rev. 36(8), e3348 (2020). https://doi.org/10.1002/dmrr.3348, https://onlinelibrary.wiley.com/doi/abs/10.1002/dmrr.3348

  14. Martinsson, J., Schliep, A., Eliasson, B., Mogren, O.: Blood glucose prediction with variance estimation using recurrent neural networks. J. Healthcare Inf. Res. 4(1), 1–18 (2019). https://doi.org/10.1007/s41666-019-00059-y

    CrossRef  Google Scholar 

  15. Meyer, J., Simske, S., Siek, K.A., Gurrin, C.G., Hermens, H.: Beyond quantified self: data for wellbeing. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2014, pp. 95–98. Association for Computing Machinery, New York (2014)

    Google Scholar 

  16. Munoz-Organero, M.: Deep physiological model for blood glucose prediction in t1dm patients. Sensors 20(14) (2020). https://doi.org/10.3390/s20143896 ,https://www.mdpi.com/1424-8220/20/14/3896

  17. Suresh, M., Taib, R., Zhao, Y., Jin, W.: Sharpening the BLADE: missing data imputation using supervised machine learning. In: Liu, J., Bailey, J. (eds.) AI 2019. LNCS (LNAI), vol. 11919, pp. 215–227. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35288-2_18

    CrossRef  Google Scholar 

  18. Swan, M.: The quantified self: fundamental disruption in big data science and biological discovery. Big data 1(2), 85–99 (2013)

    CrossRef  Google Scholar 

  19. Takeuchi, H., Kodama, N., Tsurumi, K.: Time-series data analysis of blood-sugar level of a diabetic in relationship to lifestyle events. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5195–5198 (2009). https://doi.org/10.1109/IEMBS.2009.5334582

  20. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with java implementations. SIGMOD Rec. 31(1), 76–77 (2002). https://doi.org/10.1145/507338.507355

  21. Woldaregay, A.Z., et al.: Data-driven modeling and prediction of blood glucose dynamics: machine learning applications in type 1 diabetes. Artif. Intell. Med. 98, 109–134 (2019)

    CrossRef  Google Scholar 

  22. Zanon, M., Sparacino, G., Facchinetti, A., Talary, M.S., Caduff, A., Cobelli, C.: Regularised model identification improves accuracy of multisensor systems for noninvasive continuous glucose monitoring in diabetes management. J. Appl. Math. 2013(SI05), 1 – 10 (2013). https://doi.org/10.1155/2013/793869

  23. Zarkogianni, K., et al.: Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring. Med. Biol. Eng. Comput. 53(12), 1333–1343 (2015). https://doi.org/10.1007/s11517-015-1320-9

    CrossRef  Google Scholar 

  24. Zecchin, C., Facchinetti, A., Sparacino, G., Cobelli, C.: Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput. Methods Program. Biomed. 113(1), 144–152 (2014). https://doi.org/10.1016/j.cmpb.2013.09.016, https://www.sciencedirect.com/science/article/pii/S0169260713003234

  25. Zecchin, C., et al.: Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring. Diabetes Tech. Ther. 15(10), 836–844 (2013). https://doi.org/10.1089/dia.2013.0105, pMID: 23944973

  26. Zecchin, C., Facchinetti, A., Sparacino, G., De Nicolao, G., Cobelli, C.: Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans. Biomed. Eng. 59(6), 1550–1560 (2012). https://doi.org/10.1109/TBME.2012.2188893

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathal Gurrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Palbar, T., Kesavulu, M., Gurrin, C., Verbruggen, R. (2022). Prediction of Blood Glucose Using Contextual LifeLog Data. In: , et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13141. Springer, Cham. https://doi.org/10.1007/978-3-030-98358-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98358-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98357-4

  • Online ISBN: 978-3-030-98358-1

  • eBook Packages: Computer ScienceComputer Science (R0)