Skip to main content

An Investigation into Keystroke Dynamics and Heart Rate Variability as Indicators of Stress

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13141))

Included in the following conference series:

Abstract

Lifelogging has become a prominent research topic in recent years. Wearable sensors like Fitbits and smart watches are now increasingly popular for recording one’s activities. Some researchers are also exploring keystroke dynamics for lifelogging. Keystroke dynamics refers to the process of measuring and assessing a person’s typing rhythm on digital devices. A digital footprint is created when a user interacts with devices like keyboards, mobile phones or touch screen panels and the timing of the keystrokes is unique to each individual though likely to be affected by factors such as fatigue, distraction or emotional stress. In this work we explore the relationship between keystroke dynamics as measured by the timing for the top-10 most frequently occurring bigrams in English, and the emotional state and stress of an individual as measured by heart rate variabiity (HRV). We collected keystroke data using the Loggerman application while HRV was simultaneously gathered. With this data we performed an analysis to determine the relationship between variations in keystroke dynamics and variations in HRV. Our conclusion is that we need to use a more detailed representation of keystroke timing than the top-10 bigrams, probably personalised to each user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://norvig.com/mayzner.html

References

  1. Acar, B., Savelieva, I., Hemingway, H., Malik, M.: Automatic ectopic beat elimination in short-term heart rate variability measurement. Computer Methods and Programs in Biomedicine 63(2), 123–131 (2000)

    Article  Google Scholar 

  2. Acharya, U.R., Joseph, K.P., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Medical and Biological Engineering and Computing 44(12), 1031–1051 (2006)

    Article  Google Scholar 

  3. Bergadano, F., Gunetti, D., Picardi, C.: User authentication through keystroke dynamics. ACM Transactions on Information and System Security (TISSEC) 5(4), 367–397 (2002)

    Article  Google Scholar 

  4. Crawford, H.: Keystroke dynamics: Characteristics and opportunities. In: 2010 Eighth International Conference on Privacy, Security and Trust. pp. 205–212. IEEE (2010)

    Google Scholar 

  5. De Ru, W.G., Eloff, J.H.: Enhanced password authentication through fuzzy logic. IEEE Expert 12(6), 38–45 (1997)

    Article  Google Scholar 

  6. Deng, Y., Zhong, Y.: Keystroke dynamics user authentication based on Gaussian mixture model and deep belief nets. International Scholarly Research Notices 2013 (2013)

    Google Scholar 

  7. Epp, C., Lippold, M., Mandryk, R.L.: Identifying emotional states using keystroke dynamics. In: Proc. SIGCHI Conference on Human Factors in Computing Systems. pp. 715–724 (2011)

    Google Scholar 

  8. Gunetti, D., Picardi, C.: Keystroke analysis of free text. ACM Transactions on Information and System Security (TISSEC) 8(3), 312–347 (2005)

    Article  Google Scholar 

  9. Hinbarji, Z., Albatal, R., O’Connor, N., Gurrin, C.: Loggerman, a comprehensive logging and visualization tool to capture computer usage. In: International Conference on Multimedia Modeling. pp. 342–347. Springer (2016)

    Google Scholar 

  10. Hjortskov, N., Rissén, D., Blangsted, A.K., Fallentin, N., Lundberg, U., Søgaard, K.: The effect of mental stress on heart rate variability and blood pressure during computer work. European Journal of Applied Physiology 92(1), 84–89 (2004)

    Article  Google Scholar 

  11. Kaur, B., Durek, J.J., O’Kane, B.L., Tran, N., Moses, S., Luthra, M., Ikonomidou, V.N.: Heart rate variability (hrv): an indicator of stress. In: Independent Component Analyses, Compressive Sampling, Wavelets, Neural Net, Biosystems, and Nanoengineering XII. vol. 9118, p. 91180V. International Society for Optics and Photonics (2014)

    Google Scholar 

  12. Leijten, M., Van Waes, L.: Keystroke logging in writing research: Using inputlog to analyze and visualize writing processes. Written Communication 30(3), 358–392 (2013)

    Article  Google Scholar 

  13. McCraty, R.: Science of the Heart : Exploring the Role of the Heart in Human Performance, An Overview of Research Conducted by the HeartMath Institute : Chapter 03: Heart Rate Variability. HeartMath Institute (2016)

    Google Scholar 

  14. Neal, A.S.: Time intervals between keystrokes, records, and fields in data entry with skilled operators. Human Factors 19(2), 163–170 (1977)

    Article  Google Scholar 

  15. Panasiuk, P., Saeed, K.: A modified algorithm for user identification by his typing on the keyboard. In: Image Proc. and Communications Challenges 2. pp. 113–120. Springer (2010)

    Google Scholar 

  16. Senk, C., Dotzler, F.: Biometric authentication as a service for enterprise identity management deployment: a data protection perspective. In: 2011 Sixth International Conference on Availability, Reliability and Security. pp. 43–50. IEEE (2011)

    Google Scholar 

  17. Smeaton, A.F., Krishnamurthy, N.G., Suryanarayana, A.H.: Keystroke dynamics as part of lifelogging. In: Intnl. Conference on Multimedia Modeling. pp. 183–195. Springer (2021)

    Google Scholar 

  18. Teh, P.S., Teoh, A.B.J., Yue, S.: A survey of keystroke dynamics biometrics. The Scientific World Journal 2013 (2013)

    Google Scholar 

  19. Vizer, L.M., Zhou, L., Sears, A.: Automated stress detection using keystroke and linguistic features: An exploratory study. Intnl. J. of Human-Computer Studies 67(10), 870–886 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to our participants for sharing their data with us. This work was partly supported by Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289_P2, co-funded by the European Regional Development Fund

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan F. Smeaton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Unni, S., Gowda, S.S., Smeaton, A.F. (2022). An Investigation into Keystroke Dynamics and Heart Rate Variability as Indicators of Stress. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13141. Springer, Cham. https://doi.org/10.1007/978-3-030-98358-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98358-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98357-4

  • Online ISBN: 978-3-030-98358-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics