Skip to main content

UIT at VBS 2022: An Unified and Interactive Video Retrieval System with Temporal Search

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13142))

Included in the following conference series:

Abstract

This paper introduces our multimedia retrieval system for the Video Browser Showdown 2022 competition. The system was built for interactive retrieval task in a large video collection by focusing on four fundamental methods. First, we allow users to search by object features such as position and color. Secondly, our system also supports searching by text instances appearing in video segments. Next, we support searching by visual-textual association. And finally, the system can also search for videos containing a specific audio category. Moreover, we extend our framework to support temporal queries for all of the mentioned features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berns, F., et al.: V3C1 dataset: an evaluation of content characteristics. In: Proceedings of the 2019 on International Conference on Multimedia Retrieval, pp. 334–338 (2019)

    Google Scholar 

  2. Du, Y., et al.: PP-OCR: a practical ultra lightweight OCR system. arXiv preprint arXiv:2009.09941 (2020)

  3. Gemmeke, J.F., et al.: Audio set: an ontology and human-labeled dataset for audio events. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 776–780. IEEE (2017)

    Google Scholar 

  4. Heller, S., et al.: Towards explainable interactive multi-modal video retrieval with Vitrivr. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12573, pp. 435–440. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67835-7_41

    Chapter  Google Scholar 

  5. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. arXiv preprint arXiv:1702.08734 (2017)

  6. Kong, Q., et al.: PANNs: large-scale pretrained audio neural networks for audio pattern recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 2880–2894 (2020)

    Article  Google Scholar 

  7. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  8. Le, N.-K., Nguyen, D.-H., Tran, M.-T.: An interactive video search platform for multi-modal retrieval with advanced concepts. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 766–771. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_67

    Chapter  Google Scholar 

  9. Lokoč, J., Kovalčík, G., Souček, T.: VIRET at video browser showdown 2020. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 784–789. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_70

    Chapter  Google Scholar 

  10. Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)

  11. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  12. Ressmann, A., Schoeffmann, K.: IVOS - the ITEC interactive video object search system at VBS2021. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12573, pp. 479–483. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67835-7_48

    Chapter  Google Scholar 

  13. Rossetto, L., Schoeffmann, K., Bernstein, A.: Insights on the V3C2 dataset. arXiv preprint arXiv:2105.01475 (2021)

  14. Rossetto, L., et al.: Interactive video retrieval in the age of deep learning. Detailed evaluation of VBS 2019. IEEE Trans. Multimedia 23, 243–256 (2020)

    Google Scholar 

  15. Rossetto, L., et al.: On the user-centric comparative remote evaluation of interactive video search systems. IEEE MultiMedia 28(4), 18–28 (2021)

    Article  Google Scholar 

  16. Soucek, T., Lokoc, J.: TransNet V2: an effective deep network architecture for fast shot transition detection. CoRR abs/2008.04838, arXiv: 2008.04838 (2020)

Download references

Acknowledgement

This research is funded by University of Information Technology - Vietnam National University Ho Chi Minh City under grant number D1-2022-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khanh Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ho, K. et al. (2022). UIT at VBS 2022: An Unified and Interactive Video Retrieval System with Temporal Search. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98355-0_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98354-3

  • Online ISBN: 978-3-030-98355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics