Skip to main content

Exquisitor at the Video Browser Showdown 2022

  • 1458 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13142)

Abstract

Exquisitor is the state-of-the-art large-scale interactive learning approach for media exploration that utilizes user relevance feedback at its core and is capable of interacting with collections containing more than 100M multimedia items at sub-second latency. In this work, we propose improvements to Exquisitor that include new features extracted at shot level for semantic concepts, scenes and actions. In addition, we introduce extensions to the video summary interface providing a better overview of the shots. Finally, we replace a simple keyword search featured in the previous versions of the system with a semantic search based on modern contextual representations.

Keywords

  • Interactive learning
  • Video browsing
  • Multimodal representation learning
  • Semantic search

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-98355-0_47
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-98355-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Guðmundsson, G.Þ., Jónsson, B.Þ., Amsaleg, L.: A large-scale performance study of cluster-based high-dimensional indexing. In: Proceedings of International Workshop on Very-large-scale Multimedia Corpus, Mining and Retrieval (VLS-MCM), Firenze, Italy (2010)

    Google Scholar 

  2. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6546–6555 (2018)

    Google Scholar 

  3. Jónsson, B.Þ, Khan, O.S., Koelma, D.C., Rudinac, S., Worring, M., Zahálka, J.: Exquisitor at the video browser showdown 2020. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 796–802. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_72

    CrossRef  Google Scholar 

  4. Khan, O.S., et al.: Exquisitor at the video browser showdown 2021: relationships between semantic classifiers. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12573, pp. 410–416. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67835-7_37

    CrossRef  Google Scholar 

  5. Khan, O.S., et al.: Interactive learning for multimedia at large. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 495–510. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_33

    CrossRef  Google Scholar 

  6. Kratochvíl, M., Veselý, P., Mejzlík, F., Lokoč, J.: SOM-Hunter: video browsing with relevance-to-SOM feedback loop. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 790–795. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_71

    CrossRef  Google Scholar 

  7. Lokoč, J., et al.: Interactive search or sequential browsing? A detailed analysis of the video browser showdown 2018. ACM TOMM 15(1), 1–18 (2019)

    Google Scholar 

  8. Lokoč, J., Kovalčík, G., Souček, T.: VIRET at video browser showdown 2020. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 784–789. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_70

    CrossRef  Google Scholar 

  9. Mettes, P., Koelma, D.C., Snoek, C.G.: The ImageNet shuffle: reorganized pre-training for video event detection. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, ICMR 2016, pp. 175–182. Association for Computing Machinery, New York (2016)

    Google Scholar 

  10. Nguyen, P.A., Wu, J., Ngo, C.-W., Francis, D., Huet, B.: VIREO @ video browser showdown 2020. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 772–777. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_68

    CrossRef  Google Scholar 

  11. Ragnarsdóttir, H., et al.: Exquisitor: breaking the interaction barrier for exploration of 100 million images. In: Proceedings of ACM Multimedia, Nice, France (2019)

    Google Scholar 

  12. Rossetto, L., Giangreco, I., Gasser, R., Schuldt, H.: Competitive video retrieval with vitrivr at the video browser showdown 2018-final notes. arXiv preprint arXiv:1805.02371 (2018)

  13. Rossetto, L., Schoeffmann, K., Bernstein, A.: Insights on the V3C2 dataset. CoRR arXiv:2105.01475 (2021)

  14. Rossetto, L., Schuldt, H., Awad, G., Butt, A.A.: V3C – a research video collection. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11295, pp. 349–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05710-7_29

    CrossRef  Google Scholar 

  15. Sauter, L., Amiri Parian, M., Gasser, R., Heller, S., Rossetto, L., Schuldt, H.: Combining Boolean and multimedia retrieval in vitrivr for large-scale video search. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 760–765. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_66

    CrossRef  Google Scholar 

  16. Yuan, J., et al.: Tsinghua University at TRECVID 2004: shot boundary detection and high-level feature extraction. In: TRECVID. Citeseer (2004)

    Google Scholar 

  17. Zahálka, J., Rudinac, S., Jónsson, B.Þ., Koelma, D.C., Worring, M.: Blackthorn: large-scale interactive multimodal learning. IEEE TMM 20(3), 687–698 (2018)

    Google Scholar 

  18. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Analy. Mach. Intell. 40, 1452–1464 (2017)

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by a Ph.D. grant from the IT University of Copenhagen and by the European Regional Development Fund (project Robotics for Industry 4.0, CZ.02.1.01/0.0/0.0/15 003/0000470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Shahbaz Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Khan, O.S. et al. (2022). Exquisitor at the Video Browser Showdown 2022. In: , et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98355-0_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98354-3

  • Online ISBN: 978-3-030-98355-0

  • eBook Packages: Computer ScienceComputer Science (R0)