Skip to main content

Efficient Search and Browsing of Large-Scale Video Collections with Vibro

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13142)

Abstract

In this paper, we present the newest version of our interactive video browser tool Vibro. For this iteration, we focused on improving the user interface to enable a more accessible temporal search, upgrading the shot-detection algorithm, replacing a keyword-based search with rich text input, and reducing query times by applying a graph-based approximate nearest neighbor search method. With these extensive updates, we feel well-equipped to handle the huge amounts of data coming our way in the next VBS competitions and achieve competitive results in the contest.

Keywords

  • Content-based video retrieval
  • Exploration
  • Visualization
  • Image browsing
  • Visual and textual co-embeddings

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-98355-0_43
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-98355-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Asano, Y.M., Rupprecht, C., Vedaldi, A.: Self-labelling via simultaneous clustering and representation learning. In: ICLR. OpenReview.net (2020)

    Google Scholar 

  2. Aumüller, M., Bernhardsson, E., Faithfull, A.: ANN-benchmarks: a benchmarking tool for approximate nearest neighbor algorithms. Inf. Syst. 87, 101374 (2020)

    CrossRef  Google Scholar 

  3. Barthel, K.U., Hezel, N.: Visually Exploring Millions of Images using Image Maps and Graphs, chap. 11, pp. 289–315. Wiley, Hoboken (2019)

    Google Scholar 

  4. Berns, F., Rossetto, L., Schoeffmann, K., Beecks, C., Awad, G.: V3C1 dataset: an evaluation of content characteristics. In: ICMR 2019 Proceedings of the 2019 on International Conference on Multimedia Retrieval (2019)

    Google Scholar 

  5. Cao, B., Araujo, A., Sim, J.: Unifying deep local and global features for image search. arXiv pp. arXiv-2001 (2020)

    Google Scholar 

  6. Chen, Y.-C., et al.: UNITER: UNiversal image-TExt representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 104–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_7

    CrossRef  Google Scholar 

  7. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_15

    CrossRef  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Heller, S., et al.: Towards explainable interactive multi-modal video retrieval with Vitrivr. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12573, pp. 435–440. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67835-7_41

    CrossRef  Google Scholar 

  10. Hezel, N., Barthel, K.U.: Dynamic construction and manipulation of hierarchical quartic image graphs. In: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, ICMR 2018, pp. 513–516. Association for Computing Machinery, New York (2018)

    Google Scholar 

  11. Hezel, N., Schall, K., Jung, K., Barthel, K.U.: Video search with sub-image keyword transfer using existing image archives. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12573, pp. 484–489. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67835-7_49

    CrossRef  Google Scholar 

  12. Kratochvíl, M., Veselý, P., Mejzlík, F., Lokoč, J.: SOM-hunter: video browsing with relevance-to-SOM feedback loop. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 790–795. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_71

    CrossRef  Google Scholar 

  13. Lokoč, J., et al.: Is the reign of interactive search eternal? Findings from the video browser showdown 2020. ACM Trans. Multimedia Comput. Commun. Appl. 17(3), 1–26 (2021)

    Google Scholar 

  14. Radford, A., et al.: Learning transferable visual models from natural language supervision. CoRR abs/2103.00020 (2021)

    Google Scholar 

  15. Schall, K., Barthel, K.U., Hezel, N., Jung, K.: Deep aggregation of regional convolutional activations for content based image retrieval. In: 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6. IEEE (2019)

    Google Scholar 

  16. Wang, M., Xu, X., Yue, Q., Wang, Y.: A comprehensive survey and experimental comparison of graph-based approximate nearest neighbor search. Proc. VLDB Endow. 14(11), 1964–1978 (2021)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Hezel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hezel, N., Schall, K., Jung, K., Barthel, K.U. (2022). Efficient Search and Browsing of Large-Scale Video Collections with Vibro. In: , et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98355-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98354-3

  • Online ISBN: 978-3-030-98355-0

  • eBook Packages: Computer ScienceComputer Science (R0)