Abstract
As the video streaming traffic in mobile networks is increasing, improving the content delivery process becomes crucial, e.g., by utilizing edge computing support. At an edge node, we can deploy adaptive bitrate (ABR) algorithms with a better understanding of network behavior and access to radio and player metrics. In this work, we present ECAS-ML, Edge Assisted Adaptation Scheme for HTTP Adaptive Streaming with Machine Learning. ECAS-ML focuses on managing the tradeoff among bitrate, segment switches and stalls to achieve a higher quality of experience (QoE). For that purpose, we use machine learning techniques to analyze radio throughput traces and predict the best parameters of our algorithm to achieve better performance. The results show that ECAS-ML outperforms other client-based and edge-based ABR algorithms.
Keywords
- HTTP Adaptive Streaming
- Edge computing
- Content delivery
- Network-assisted video streaming
- Quality of experience
- Machine learning
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
3GPP: 3GPP TS 26.247. Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH). Technical report (2015)
Aguilar-Armijo, J., Timmerer, C., Hellwagner, H.: EADAS: edge assisted adaptation scheme for HTTP adaptive streaming. In: Proceedings of 46th Conference on IEEE Local Computer Networks (LCN) (2021)
Belmoukadam, O., Jawad Khokhar, M., Barakat, C.: On accounting for screen resolution in adaptive video streaming: QoE-driven bandwidth sharing framework. Int. J. Netw. Manage 31(1), e2128 (2021)
Bentaleb, A., Taani, B., Begen, A.C., Timmerer, C., Zimmermann, R.: A survey on bitrate adaptation schemes for streaming media over HTTP. IEEE Commun. Surv. Tutor. 21(1), 562–585 (2018)
Bhat, D., Rizk, A., Zink, M., Steinmetz, R.: SABR: network-assisted content distribution for QoE-driven ABR video streaming. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 14(2s), 1–25 (2018)
Chang, Z., Zhou, X., Wang, Z., Li, H., Zhang, X.: Edge-assisted adaptive video streaming with deep learning in mobile edge networks. In: 2019 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE (2019)
Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS 2014 Workshop on Deep Learning (2014)
ETSI: Mobile Edge Computing (MEC); Radio Network Information API. Technical report. Accessed: October 2020
Fajardo, J.O., Taboada, I., Liberal, F.: Improving content delivery efficiency through multi-layer mobile edge adaptation. IEEE Netw. 29(6), 40–46 (2015)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing-a key technology towards 5G. ETSI White Paper 11(11), 1–16 (2015)
Huang, T.Y., Johari, R., McKeown, N., Trunnell, M., Watson, M.: A buffer-based approach to rate adaptation: evidence from a large video streaming service. ACM SIGCOMM Comput. Commun. Rev. 44(4), 187–198 (2014)
Huber, P.J.: Robust estimation of a location parameter. In: Breakthroughs in Statistics, pp. 492–518. Springer, Cham (1992). https://doi.org/10.1007/978-1-4612-4380-9_35
Juluri, P., Tamarapalli, V., Medhi, D.: SARA: segment aware rate adaptation algorithm for dynamic adaptive streaming over HTTP. In: Proceedings of IEEE International Conference on Communication Workshops (ICCW), pp. 1765–1770 (2015)
Kim, M., Chung, K.: Edge computing assisted adaptive streaming scheme for mobile networks. IEEE Access 9, 2142–2152 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (ICLR) (2015)
Lederer, S., Müller, C., Timmerer, C.: Dynamic adaptive streaming over HTTP dataset. In: Proceedings of 3rd ACM Multimedia Systems Conference, pp. 89–94 (2012)
Ma, X., Li, Q., Chai, J., Xiao, X., Xia, S.T., Jiang, Y.: Steward: smart edge based joint QoE optimization for adaptive video streaming. In: Proceedings of 29th ACM NOSSDAV Workshop, pp. 31–36 (2019)
Nguyen, D.V., Le, H.T., Nam, P.N., Pham, A.T., Thang, T.C.: Adaptation method for video streaming over HTTP/2. IEICE Commun. Express 5(3), 69–73 (2016)
Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318. PMLR (2013)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)
Raca, D., Quinlan, J.J., Zahran, A.H., Sreenan, C.J.: Beyond throughput: a 4G LTE dataset with channel and context metrics. In: Proceedings of 9th ACM Multimedia Systems Conference, pp. 460–465 (2018)
Robitza, W., et al.: HTTP adaptive streaming QoE estimation with ITU-T Rec. P.1203 - open databases and software. In: Proceedings of 9th ACM Multimedia Systems Conference, Amsterdam (2018). https://doi.org/10.1145/3204949.3208124
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Yan, Z., Xue, J., Chen, C.W.: Prius: hybrid edge cloud and client adaptation for HTTP adaptive streaming in cellular networks. IEEE Trans. Circuits Syst. Video Technol. 27(1), 209–222 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Aguilar-Armijo, J., Çetinkaya, E., Timmerer, C., Hellwagner, H. (2022). ECAS-ML: Edge Computing Assisted Adaptation Scheme with Machine Learning for HTTP Adaptive Streaming. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-98355-0_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98354-3
Online ISBN: 978-3-030-98355-0
eBook Packages: Computer ScienceComputer Science (R0)