Skip to main content

Dermal Sheath Cells and Hair Follicle Regeneration

  • Chapter
  • First Online:
Hair Follicle Regeneration

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 72))

Abstract

The dermal sheath (DS) cells are present in a sheath-like connective tissue on the outermost side of the hair follicle; DS connects to the dermal papilla (DP) in the lower part of the hair bulb. The ability of DP cells to induce and regenerate hair follicles has been demonstrated in a great number of studies as discussed in other chapters. In this chapter, the characteristics and functions of DS cells in hair follicle regeneration have been reviewed. The potential of a clinical application using DS cells for male and female pattern loss is also discussed in this chapter. The PubMed database was used for the selection of papers with keywords including ‘dermal sheath’, ‘connective tissue sheath’, and ‘hair’. Through a comprehensive reading of the abstracts, papers on hair follicle regeneration were further selected and cited. Several papers have shown that DS cells can induce growth of new hair follicles. Recent studies reported the presence of hair follicle dermal stem cells in the DS, suggesting these may be responsible for hair follicle regeneration. Based on these properties, clinical studies have been conducted on male and female pattern hair loss using lower DS cells. The initial results from these studies show safety and some efficacy of lower DS cells in hair follicle regeneration. In conclusion, several rodent studies have shown that the DS and cells derived from it have both hair regenerative and skin regenerative potential. Further studies characterizing human DS cells and identifying if there are human hair follicle dermal stem cells need to precede further understanding of human hair follicle regeneration, for the development of an efficient clinical application for male and female pattern hair loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Philippeos C, Telerman SB, Oules B, Pisco AO, Shaw TJ, Elgueta R, Lombardi G, Driskell RR, Soldin M, Lynch MD, Watt FM (2018) Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J Invest Dermatol 138:811–825. https://doi.org/10.1016/j.jid.2018.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tabib T, Morse C, Wang T, Chen W, Lafyatis R (2018) SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin. J Invest Dermatol 138:802–810. https://doi.org/10.1016/j.jid.2017.09.045

    Article  CAS  PubMed  Google Scholar 

  3. Sorrell JM, Caplan AI (2004) Fibroblast heterogeneity: more than skin deep. J Cell Sci 117:667–675. https://doi.org/10.1242/jcs.01005

    Article  CAS  PubMed  Google Scholar 

  4. Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD, Charalambous M, Ferron SR, Herault Y, Pavlovic G, Ferguson-Smith AC, Watt FM (2013) Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504:277–281. https://doi.org/10.1038/nature12783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Collins CA, Kretzschmar K, Watt FM (2011) Reprogramming adult dermis to a neonatal state through epidermal activation of beta-catenin. Development 138:5189–5199. https://doi.org/10.1242/dev.064592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ito M, Sato Y (1990) Dynamic ultrastructural changes of the connective tissue sheath of human hair follicles during hair cycle. Arch Dermatol Res 282:434–441. https://doi.org/10.1007/BF00402618

    Article  CAS  PubMed  Google Scholar 

  7. Urabe A, Furumura M, Imayama S, Nakayama J, Hori Y (1992) Identification of a cell layer containing alpha-smooth muscle actin in the connective tissue sheath of human anagen hair. Arch Dermatol Res 284:246–249. https://doi.org/10.1007/BF00375803

    Article  CAS  PubMed  Google Scholar 

  8. Jahoda CA, Reynolds AJ, Chaponnier C, Forester JC, Gabbiani G (1991) Smooth muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro. J Cell Sci 99(Pt 3):627–636

    Article  Google Scholar 

  9. Heitman N, Sennett R, Mok KW, Saxena N, Srivastava D, Martino P, Grisanti L, Wang Z, Ma’ayan A, Rompolas P, Rendl M (2020) Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science 367:161–166. https://doi.org/10.1126/science.aax9131

    Article  CAS  PubMed  Google Scholar 

  10. Grisanti L, Clavel C, Cai X, Rezza A, Tsai SY, Sennett R, Mumau M, Cai CL, Rendl M (2013) Tbx18 targets dermal condensates for labeling, isolation, and gene ablation during embryonic hair follicle formation. J Invest Dermatol 133:344–353. https://doi.org/10.1038/jid.2012.329

    Article  CAS  PubMed  Google Scholar 

  11. Oliver RF (1966) Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. J Embryol Exp Morphol 15:331–347

    CAS  PubMed  Google Scholar 

  12. Horne KA, Jahoda CA (1992) Restoration of hair growth by surgical implantation of follicular dermal sheath. Development 116:563–571

    Article  CAS  Google Scholar 

  13. Jahoda CA, Oliver RF, Reynolds AJ, Forrester JC, Horne KA (1996) Human hair follicle regeneration following amputation and grafting into the nude mouse. J Invest Dermatol 107:804–807. https://doi.org/10.1111/1523-1747.ep12330565

    Article  CAS  PubMed  Google Scholar 

  14. Reynolds AJ, Lawrence C, Cserhalmi-Friedman PB, Christiano AM, Jahoda CA (1999) Trans-gender induction of hair follicles. Nature 402:33–34. https://doi.org/10.1038/46938

    Article  CAS  PubMed  Google Scholar 

  15. Jahoda CA, Reynolds AJ, Oliver RF (1993) Induction of hair growth in ear wounds by cultured dermal papilla cells. J Invest Dermatol 101:584–590

    Article  CAS  Google Scholar 

  16. Reynolds AJ, Jahoda CA (1996) Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells. Development 122:3085–3094

    Article  CAS  Google Scholar 

  17. McElwee KJ, Kissling S, Wenzel E, Huth A, Hoffmann R (2003) Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol 121:1267–1275. https://doi.org/10.1111/j.1523-1747.2003.12568.x

    Article  CAS  PubMed  Google Scholar 

  18. Gharzi A, Reynolds AJ, Jahoda CA (2003) Plasticity of hair follicle dermal cells in wound healing and induction. Exp Dermatol 12:126–136. https://doi.org/10.1034/j.1600-0625.2003.00106.x

    Article  CAS  PubMed  Google Scholar 

  19. Matsuzaki T, Inamatsu M, Yoshizato K (1996) The upper dermal sheath has a potential to regenerate the hair in the rat follicular epidermis. Differentiation 60:287–297. https://doi.org/10.1046/j.1432-0436.1996.6050287.x

    Article  CAS  PubMed  Google Scholar 

  20. Rahmani W, Abbasi S, Hagner A, Raharjo E, Kumar R, Hotta A, Magness S, Metzger D, Biernaskie J (2014) Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev Cell 31:543–558. https://doi.org/10.1016/j.devcel.2014.10.022

    Article  CAS  PubMed  Google Scholar 

  21. Yoshida Y, Soma T, Kishimoto J (2019) Characterization of human dermal sheath cells reveals CD36-expressing perivascular cells associated with capillary blood vessel formation in hair follicles. Biochem Biophys Res Commun 516:945–950. https://doi.org/10.1016/j.bbrc.2019.06.146

    Article  CAS  PubMed  Google Scholar 

  22. Feutz AC, Barrandon Y, Monard D (2008) Control of thrombin signaling through PI3K is a mechanism underlying plasticity between hair follicle dermal sheath and papilla cells. J Cell Sci 121:1435–1443. https://doi.org/10.1242/jcs.018689

    Article  CAS  PubMed  Google Scholar 

  23. Tobin DJ, Gunin A, Magerl M, Handijski B, Paus R (2003) Plasticity and cytokinetic dynamics of the hair follicle mesenchyme: implications for hair growth control. J Invest Dermatol 120:895–904. https://doi.org/10.1046/j.1523-1747.2003.12237.x

    Article  CAS  PubMed  Google Scholar 

  24. Chi WY, Enshell-Seijffers D, Morgan BA (2010) De novo production of dermal papilla cells during the anagen phase of the hair cycle. J Invest Dermatol 130:2664–2666. https://doi.org/10.1038/jid.2010.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hagner A, Shin W, Sinha S, Alpaugh W, Workentine M, Abbasi S, Rahmani W, Agabalyan N, Sharma N, Sparks H, Yoon J, Labit E, Cobb J, Dobrinski I, Biernaskie J (2020) Transcriptional profiling of the adult hair follicle mesenchyme reveals R-spondin as a novel regulator of dermal progenitor function. iScience 23:101019. https://doi.org/10.1016/j.isci.2020.101019

  26. Abbasi S, Biernaskie J (2019) Injury modifies the fate of hair follicle dermal stem cell progeny in a hair cycle-dependent manner. Exp Dermatol 28:419–424. https://doi.org/10.1111/exd.13924

    Article  CAS  PubMed  Google Scholar 

  27. Shin W, Rosin NL, Sparks H, Sinha S, Rahmani W, Sharma N, Workentine M, Abbasi S, Labit E, Stratton JA, Biernaskie J(2020) Dysfunction of hair follicle mesenchymal progenitors contributes to age-associated hair loss. Dev Cell 53:185–198 e187. https://doi.org/10.1016/j.devcel.2020.03.019

  28. Yamao M, Inamatsu M, Ogawa Y, Toki H, Okada T, Toyoshima KE, Yoshizato K (2010) Contact between dermal papilla cells and dermal sheath cells enhances the ability of DPCs to induce hair growth. J Invest Dermatol 130:2707–2718. https://doi.org/10.1038/jid.2010.241

    Article  CAS  PubMed  Google Scholar 

  29. Yamao M, Inamatsu M, Okada T, Ogawa Y, Tateno C, Yoshizato K (2017) Enhanced restoration of in situ-damaged hairs by intradermal transplantation of trichogenous dermal cells. J Tissue Eng Regen Med 11:977–988. https://doi.org/10.1002/term.1997

    Article  CAS  PubMed  Google Scholar 

  30. Tao Y, Yang Q, Wang L, Zhang J, Zhu X, Sun Q, Han Y, Luo Q, Wang Y, Guo X, Wu J, Li B, Yang X, He L, Ma G (2019) beta-catenin activation in hair follicle dermal stem cells induces ectopic hair outgrowth and skin fibrosis. J Mol Cell Biol 11:26–38. https://doi.org/10.1093/jmcb/mjy032

    Article  CAS  PubMed  Google Scholar 

  31. Zhou L, Yang K, Wickett RR, Andl T, Zhang Y (2016) Dermal sheath cells contribute to postnatal hair follicle growth and cycling. J Dermatol Sci 82:129–131. https://doi.org/10.1016/j.jdermsci.2016.02.002

    Article  PubMed  Google Scholar 

  32. Gonzalez R, Moffatt G, Hagner A, Sinha S, Shin W, Rahmani W, Chojnacki A, Biernaskie J (2017) Platelet-derived growth factor signaling modulates adult hair follicle dermal stem cell maintenance and self-renewal. NPJ Regen Med 2:11. https://doi.org/10.1038/s41536-017-0013-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784. https://doi.org/10.1038/ncb0901-778

    Article  CAS  PubMed  Google Scholar 

  34. Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, Biernaskie J, Junek A, Kobayashi NR, Toma JG, Kaplan DR, Labosky PA, Rafuse V, Hui CC, Miller FD (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6:1082–1093. https://doi.org/10.1038/ncb1181

    Article  CAS  PubMed  Google Scholar 

  35. Biernaskie J, Paris M, Morozova O, Fagan BM, Marra M, Pevny L, Miller FD (2009) SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 5:610–623. https://doi.org/10.1016/j.stem.2009.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hill RP, Gledhill K, Gardner A, Higgins CA, Crawford H, Lawrence C, Hutchison CJ, Owens WA, Kara B, James SE, Jahoda CA (2012) Generation and characterization of multipotent stem cells from established dermal cultures. PLoS One 7:e50742.https://doi.org/10.1371/journal.pone.0050742

  37. Jahoda CA, Whitehouse J, Reynolds AJ, Hole N (2003) Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol 12:849–859. https://doi.org/10.1111/j.0906-6705.2003.00161.x

    Article  PubMed  Google Scholar 

  38. Ma D, Kua JE, Lim WK, Lee ST, Chua AW (2015) In vitro characterization of human hair follicle dermal sheath mesenchymal stromal cells and their potential in enhancing diabetic wound healing. Cytotherapy 17:1036–1051. https://doi.org/10.1016/j.jcyt.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  39. Agabalyan NA, Rosin NL, Rahmani W, Biernaskie J (2017) Hair follicle dermal stem cells and skin-derived precursor cells: Exciting tools for endogenous and exogenous therapies. Exp Dermatol 26:505–509. https://doi.org/10.1111/exd.13359

    Article  PubMed  Google Scholar 

  40. Driskell RR, Clavel C, Rendl M, Watt FM (2011) Hair follicle dermal papilla cells at a glance. J Cell Sci 124:1179–1182. https://doi.org/10.1242/jcs.082446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jahoda CA, Reynolds AJ (2001) Hair follicle dermal sheath cells: unsung participants in wound healing. Lancet 358:1445–1448. https://doi.org/10.1016/S0140-6736(01)06532-1

    Article  CAS  PubMed  Google Scholar 

  42. Sarrazy V, Billet F, Micallef L, Coulomb B, Desmouliere A (2011) Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound Repair Regen 19(Suppl 1):s10-15. https://doi.org/10.1111/j.1524-475X.2011.00708.x

    Article  PubMed  Google Scholar 

  43. Juniantito V, Izawa T, Yuasa T, Ichikawa C, Yamamoto E, Kuwamura M, Yamate J (2012) Immunophenotypical analyses of myofibroblasts in rat excisional wound healing: possible transdifferentiation of blood vessel pericytes and perifollicular dermal sheath cells into myofibroblasts. Histol Histopathol 27:515–527. https://doi.org/10.14670/HH-27.515

  44. Higgins CA, Roger MF, Hill RP, Ali-Khan AS, Garlick JA, Christiano AM, Jahoda CAB (2017) Multifaceted role of hair follicle dermal cells in bioengineered skins. Br J Dermatol 176:1259–1269. https://doi.org/10.1111/bjd.15087

    Article  CAS  PubMed  Google Scholar 

  45. Chi W, Wu E, Morgan BA (2013) Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140:1676–1683. https://doi.org/10.1242/dev.090662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elliott K, Stephenson TJ, Messenger AG (1999) Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J Invest Dermatol 113:873–877. https://doi.org/10.1046/j.1523-1747.1999.00797.x

    Article  CAS  PubMed  Google Scholar 

  47. Alcaraz MV, Villena A, Perez de Vargas I (1993) Quantitative study of the human hair follicle in normal scalp and androgenetic alopecia. J Cutan Pathol 20:344–349. https://doi.org/10.1111/j.1600-0560.1993.tb01273.x

    Article  CAS  PubMed  Google Scholar 

  48. Jahoda CA (1998) Cellular and developmental aspects of androgenetic alopecia. Exp Dermatol 7:235–248

    CAS  PubMed  Google Scholar 

  49. Tsuboi R, Niiyama S, Irisawa R, Harada K, Nakazawa Y, Kishimoto J (2020) Autologous cell-based therapy for male and female pattern hair loss using dermal sheath cup cells: a randomized placebo-controlled double-blinded dose-finding clinical study. J Am Acad Dermatol 83:109–116. https://doi.org/10.1016/j.jaad.2020.02.033

    Article  CAS  PubMed  Google Scholar 

  50. Yoshida Y, Soma T, Matsuzaki T, Kishimoto J (2019) Wnt activator CHIR99021-stimulated human dermal papilla spheroids contribute to hair follicle formation and production of reconstituted follicle-enriched human skin. Biochem Biophys Res Commun 516:599–605. https://doi.org/10.1016/j.bbrc.2019.06.038

    Article  CAS  PubMed  Google Scholar 

  51. Hill RP, Haycock JW, Jahoda CA (2012) Human hair follicle dermal cells and skin fibroblasts show differential activation of NF-kappaB in response to pro-inflammatory challenge. Exp Dermatol 21:158–160. https://doi.org/10.1111/j.1600-0625.2011.01401.x

    Article  CAS  PubMed  Google Scholar 

  52. Niiyama S, Ishimatsu-Tsuji Y, Nakazawa Y, Yoshida Y, Soma T, Ideta R, Mukai H, Kishimoto J (2018) Gene expression profiling of the intact dermal sheath cup of human hair follicles. Acta Derm Venereol 98:694–698. https://doi.org/10.2340/00015555-2949

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Takashi Matsuzaki (Faculty of Life and Environmental Science, Shimane University), Dr. Francisco Jimenez (University Fernando Pessoa Canarias, Las Palmas de Gran Canaria), and Dr. Claire Higgins (Department of Bioengineering, Imperial College London) for their helpful discussion and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzo Yoshida .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshida, Y., Tsuboi, R., Kishimoto, J. (2022). Dermal Sheath Cells and Hair Follicle Regeneration. In: Jimenez, F., Higgins, C. (eds) Hair Follicle Regeneration. Stem Cell Biology and Regenerative Medicine, vol 72. Humana, Cham. https://doi.org/10.1007/978-3-030-98331-4_5

Download citation

Publish with us

Policies and ethics