Skip to main content

On the Topology of Fano Smoothings

  • Conference paper
  • First Online:
Interactions with Lattice Polytopes (ILP 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 386))

Included in the following conference series:

  • 375 Accesses

Abstract

Suppose that X is a Fano manifold that corresponds under Mirror Symmetry to a Laurent polynomial f, and that P is the Newton polytope of f. In this setting it is expected that there is a family of algebraic varieties over the unit disc with general fiber X and special fiber the toric variety defined by the spanning fan of P. Building on recent work and conjectures by Corti–Hacking–Petracci, who construct such families of varieties, we determine the topology of the general fiber from combinatorial data on P. This provides evidence for the Corti–Hacking–Petracci conjectures, and verifies that their construction is compatible with expectations from Mirror Symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We learned the statement of Theorem 1 from Andrea Petracci.

  2. 2.

    The fiber \(F_v\) is homologous in Y to the sum of toric curves corresponding to 2-dimensional cones in \(\Sigma \) that contain the ray spanned by v and that lie entirely on one side of the hyperplane defined by the edge e. The choice of side does not matter here, as the resulting sums are homologous.

  3. 3.

    The co-ordinates of the vertices and interior lattice point pictured in Fig. 6.15 are as in Fig. 6.13.

  4. 4.

    The number of Minkowski polynomials here differs slightly from the count in [2], because there the authors required Minkowski decompositions of facets to satisfy an additional lattice condition (ibid., Definition 7) and here we do not regard \({{\,\mathrm{GL}\,}}(3,\mathbb {Z})\)-equivalent Minkowski polynomials as the same.

  5. 5.

    The seven three-dimensional Fano manifolds without very ample canonical bundle are not expected to admit Laurent polynomial mirrors with reflexive Newton polytopes, and so fall outside the range of the Corti–Hacking–Petracci construction.

  6. 6.

    Betti numbers for three-dimensional Fano manifolds can be found in [15].

References

  1. Akhtar, M., Coates, T., Corti, A., Heuberger, L., Kasprzyk, A.M., Oneto, A., Petracci, A., Prince, T., Tveiten, K.: Mirror symmetry and the classification of orbifold del Pezzo surfaces. Proc. Am. Math. Soc. 144(2), 513–527 (2016)

    Article  MathSciNet  Google Scholar 

  2. Akhtar, M., Coates, T., Galkin, S., Kasprzyk, A.M.: Minkowski polynomials and mutations. SIGMA Symmetry Integrability Geom. Methods Appl. 8, Paper 094, 17 (2012)

    Google Scholar 

  3. Altmann, K.: The versal deformation of an isolated toric Gorenstein singularity. Invent. Math. 128(3), 443–479 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language, pp. 235–265 (1997). Computational algebra and number theory (London, 1993)

    Google Scholar 

  5. Candelas, P., Green, P.S., Hübsch, T.: Rolling among Calabi-Yau vacua. Nucl. Phys. B 330(1), 49–102 (1990)

    Article  MathSciNet  Google Scholar 

  6. Coates, T., Corti, A., Da Silva Jr., G.: Code Repository (2019). https://bitbucket.org/fanosearch/3d_fano_smoothing

  7. Coates, T., Corti, A., Galkin, S., Golyshev, V., Kasprzyk, A.M.: Mirror symmetry and Fano manifolds. In: European Congress of Mathematics, pp. 285–300. European Mathematical Society, Zürich (2013)

    Google Scholar 

  8. Coates, T., Corti, A., Galkin, S., Kasprzyk, A.M.: Quantum periods for 3-dimensional Fano manifolds. Geom. Topol. 20(1), 103–256 (2016)

    Article  MathSciNet  Google Scholar 

  9. Coates, T., Kasprzyk, A.M.: Code repository (2019). https://bitbucket.org/fanosearch/magma-core

  10. Corti, A., Hacking, P., Petracci, A.: Smoothing Toric Fano Threefolds (2021). In preparation

    Google Scholar 

  11. De Loera, J.A., Rambau, J., Santos, F.: Triangulations. Structures for algorithms and applications. Algorithms and Computation in Mathematics, vol. 25. Springer-verlag, Berlin (2010)

    Google Scholar 

  12. Fulton, W., Sturmfels, B.: Intersection theory on toric varieties. Topology 36(2), 335–353 (1997)

    Article  MathSciNet  Google Scholar 

  13. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Polytopes—Combinatorics and Computation (Oberwolfach, 1997), DMV SEM, vol. 29, pp. 43–73. Birkhäuser, Basel (2000)

    Google Scholar 

  14. Grothendieck, A., Raynaud, M., Rim, D. (eds.): Groupes de monodromie en géométrie algébrique. I. Lecture Notes in Mathematics, Vol. 288. Springer, Berlin, New York (1972). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I)

    Google Scholar 

  15. Iskovskikh, V.A., Prokhorov, Y.G.: Fano varieties. In: Algebraic geometry, V. Encylopaedia of Mathematical Sciences, vol. 47, pp. 1–247. Springer, Berlin (1999)

    Google Scholar 

  16. Jordan, A.: Homology and cohomology of toric varieties. Ph.D. thesis, Universität Konstanz (1997)

    Google Scholar 

  17. Kreuzer, M., Skarke, H.: Classification of reflexive polyhedra in three dimensions. Adv. Theor. Math. Phys. 2(4), 853–871 (1998)

    Article  MathSciNet  Google Scholar 

  18. Namikawa, Y.: Smoothing Fano \(3\)-folds. J. Algebr. Geom. 6(2), 307–324 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Rambau, J.: TOPCOM: triangulations of point configurations and oriented matroids. In: Mathematical Software (Beijing, 2002), pp. 330–340. World Scientific Publishing, River Edge, NJ (2002)

    Google Scholar 

  20. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.4.0) (2018). http://www.sagemath.org

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 682603), and from the EPSRC Programme Grant EP/N03189X/1, Classification, Computation, and Construction: New Methods in Geometry. We thank Paul Hacking and Andrea Petracci for many extremely useful conversations, and thank Andy Thomas, Matt Harvey, and the Imperial College Research Computing Service team for invaluable technical assistance. TC thanks Alexander Kasprzyk for a number of very useful conversations about computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Coates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coates, T., Corti, A., da Silva, G. (2022). On the Topology of Fano Smoothings. In: Kasprzyk, A.M., Nill, B. (eds) Interactions with Lattice Polytopes. ILP 2017. Springer Proceedings in Mathematics & Statistics, vol 386. Springer, Cham. https://doi.org/10.1007/978-3-030-98327-7_6

Download citation

Publish with us

Policies and ethics