Skip to main content

Polygons of Finite Mutation Type

  • Conference paper
  • First Online:
Interactions with Lattice Polytopes (ILP 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 386))

Included in the following conference series:

  • 355 Accesses

Abstract

We classify Fano polygons with finite mutation class. This classification exploits a correspondence between Fano polygons and cluster algebras, refining the notion of singularity content due to Akhtar and Kasprzyk. We also introduce examples of cluster algebras associated to Fano polytopes in dimensions greater than two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharony, O., Hanany, A.: Branes, superpotentials and superconformal fixed points. Nucl. Phys. B 504(1–2), 239–271 (1997)

    Article  MathSciNet  Google Scholar 

  2. Akhtar, M., Coates, T., Corti, A., Heuberger, L., Kasprzyk, A.M., Oneto, A., Petracci, A., Prince, T., Tveiten, K.: Mirror symmetry and the classification of orbifold del Pezzo surfaces. Proc. Am. Math. Soc. 144(2), 513–527 (2016)

    Article  MathSciNet  Google Scholar 

  3. Akhtar, M., Coates, T., Galkin, S., Kasprzyk, A.M.: Minkowski polynomials and mutations. SIGMA Symmetry Integrability Geom. Methods Appl. 8, 094, 17 (2012)

    Google Scholar 

  4. Akhtar, M., Kasprzyk, A.M.: Singularity Content (2014). arXiv:1401.5458

  5. Bergman, A., Proudfoot, N.: Moduli spaces for D-branes at the tip of a cone. J. High Energy Phys. (3), 073, 9 (2006)

    Google Scholar 

  6. Bernšteĭn, I.N., Gel\(\prime \) fand, I.M., Ponomarev, V.A.: Coxeter functors, and Gabriel’s theorem. Uspehi Mat. Nauk 28(2(170)), 19–33 (1973)

    Google Scholar 

  7. Bridgeland, T., Stern, D.: Helices on del Pezzo surfaces and tilting Calabi-Yau algebras. Adv. Math. 224(4), 1672–1716 (2010)

    Article  MathSciNet  Google Scholar 

  8. Corti, A., Heuberger, L.: Del Pezzo surfaces with \(\frac{1}{3}(1,1)\) points. Manuscripta Math. 153(1–2), 71–118 (2017)

    Article  MathSciNet  Google Scholar 

  9. Felikson, A., Shapiro, M., Tumarkin, P.: Skew-symmetric cluster algebras of finite mutation type. J. Eur. Math. Soc. (JEMS) 14(4), 1135–1180 (2012)

    Article  MathSciNet  Google Scholar 

  10. Feng, B., Hanany, A., He, Y.H.: Phase structure of D-brane gauge theories and toric duality. J. High Energy Phys. (8), 40, 25 (2001)

    Google Scholar 

  11. Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. II. The intertwiner. In: Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, vol. I, Progress in Mathematics, vol. 269, pp. 655–673. Birkhäuser Boston, Inc., Boston, MA (2009)

    Google Scholar 

  12. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201(1), 83–146 (2008)

    Article  MathSciNet  Google Scholar 

  13. Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Article  MathSciNet  Google Scholar 

  14. Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math. 154(1), 63–121 (2003)

    Article  MathSciNet  Google Scholar 

  15. Franco, S., Hanany, A., Martelli, D., Sparks, J., Vegh, D., Wecht, B.: Gauge theories from toric geometry and brane tilings. J. High Energy Phys. (1), 128, 40 (2006)

    Google Scholar 

  16. Galkin, S., Usnich, A.: Mutations of Potentials (2010). Preprint IPMU 10-0100

    Google Scholar 

  17. Givental, A.: A mirror theorem for toric complete intersections. In: Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progress in Mathematics, vol. 160, pp. 141–175. Birkhäuser Boston, Boston, MA (1998)

    Google Scholar 

  18. Givental, A.B.: Homological geometry and mirror symmetry. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), pp. 472–480. Birkhäuser, Basel (1995)

    Google Scholar 

  19. Givental, A.B.: Equivariant Gromov-Witten invariants. Internat. Math. Res. Not. 13, 613–663 (1996)

    Article  MathSciNet  Google Scholar 

  20. Gross, M., Hacking, P., Keel, S.: Birational geometry of cluster algebras. Algebr. Geom. 2(2), 137–175 (2015)

    Article  MathSciNet  Google Scholar 

  21. Hanany, A., Kazakopoulos, P., Wecht, B.: A new infinite class of quiver gauge theories. J. High Energy Phys. (8), 054, 30 (2005)

    Google Scholar 

  22. Hanany, A., Vegh, D.: Quivers, tilings, branes and rhombi. J. High Energy Phys. (10), 029, 35 (2007)

    Google Scholar 

  23. Herzog, C.P.: Seiberg duality is an exceptional mutation. J. High Energy Phys. (8), 064, 31 (2004)

    Google Scholar 

  24. Hille, L., Perling, M.: Exceptional sequences of invertible sheaves on rational surfaces. Compos. Math. 147(4), 1230–1280 (2011)

    Article  MathSciNet  Google Scholar 

  25. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror symmetry, Clay Mathematics Monographs, vol. 1. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA (2003). With a preface by Vafa

    Google Scholar 

  26. Ilten, N.O.: Mutations of Laurent polynomials and flat families with toric fibers. SIGMA Symmetry Integrability Geom. Methods Appl. 8, 047, 7 (2012)

    Google Scholar 

  27. Kasprzyk, A.M., Nill, B., Prince, T.: Minimality and mutation-equivalence of polygons. Forum Math. Sigma 5, e18, 48 (2017)

    Google Scholar 

  28. Kontsevich, M.: Lectures at ENS Paris (1998). Set of notes taken by J. Bellaiche, J.-F. Dat, I. Martin, G. Rachinet and H. Randriambololona

    Google Scholar 

  29. Leung, N.C., Vafa, C.: Branes and toric geometry. Adv. Theor. Math. Phys. 2(1), 91–118 (1998)

    Article  MathSciNet  Google Scholar 

  30. Mandel, T.: Classification of rank 2 cluster varieties. SIGMA Symmetry Integrability Geom. Methods Appl. 15, 042, 32 (2019)

    Google Scholar 

  31. Mukhopadhyay, S., Ray, K.: Seiberg duality as derived equivalence for some quiver gauge theories. J. High Energy Phys. (2), 070, 22 (2004)

    Google Scholar 

  32. Perling, M.: Examples for exceptional sequences of invertible sheaves on rational surfaces. In: Geometric methods in representation theory. II, Sémin. Congr., vol. 24, pp. 371–392. Society Mathematics France, Paris (2012)

    Google Scholar 

  33. Rietsch, K., Williams, L.: Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians. Duke Math. J. 168(18), 3437–3527 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Alexander Kasprzyk for his insights on polytope mutation, and our many conversations about quivers. The author is supported by a Fellowship by Examination at Magdalen College, Oxford. This work was undertaken while the author was a graduate student at Imperial College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Prince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prince, T. (2022). Polygons of Finite Mutation Type. In: Kasprzyk, A.M., Nill, B. (eds) Interactions with Lattice Polytopes. ILP 2017. Springer Proceedings in Mathematics & Statistics, vol 386. Springer, Cham. https://doi.org/10.1007/978-3-030-98327-7_15

Download citation

Publish with us

Policies and ethics