Skip to main content

Schubert Calculus on Newton–Okounkov Polytopes

  • Conference paper
  • First Online:
Interactions with Lattice Polytopes (ILP 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 386))

Included in the following conference series:

  • 377 Accesses

Abstract

A Newton–Okounkov polytope of a complete flag variety can be turned into a convex geometric model for Schubert calculus. Namely, we can represent Schubert cycles by linear combinations of faces of the polytope so that the intersection product of cycles corresponds to the set-theoretic intersection of faces (whenever the latter are transverse). We explain the general framework and survey particular realizations of this approach in types AB and C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berenstein, A.D., Zelevinsky, A.V.: Tensor product multiplicities and convex polytopes in partition space. J. Geom. Phys. 5(3), 453–472 (1988)

    Article  MathSciNet  Google Scholar 

  2. Brion, M.: Lectures on the geometry of flag varieties. In: Topics in Cohomological Studies of Algebraic Varieties, Trends in Mathematics, pp. 33–85. Birkhäuser, Basel (2005)

    Google Scholar 

  3. Fang, X., Fourier, G., Littelmann, P.: Essential bases and toric degenerations arising from birational sequences. Adv. Math. 312, 107–149 (2017)

    Article  MathSciNet  Google Scholar 

  4. Feigin, E., Fourier, G., Littelmann, P.: Favourable modules: filtrations, polytopes, Newton-Okounkov bodies and flat degenerations. Transform. Groups 22(2), 321–352 (2017)

    Article  MathSciNet  Google Scholar 

  5. Fujita, N.: Polyhedral realizations of crystal bases and convex-geometric Demazure operators. Selecta Math. (N.S.) 25(5), Paper No. 74 (2019)

    Google Scholar 

  6. Fujita, N., Oya, H.: A comparison of Newton-Okounkov polytopes of Schubert varieties. J. Lond. Math. Soc. (2) 96(1), 201–227 (2017)

    Google Scholar 

  7. Harada, M., Yang, J.J.: Newton-Okounkov bodies of Bott-Samelson varieties and Grossberg-Karshon twisted cubes. Michigan Math. J. 65(2), 413–440 (2016)

    Article  MathSciNet  Google Scholar 

  8. Harada, M., Yang, J.J.: Singular string polytopes and functorial resolutions from Newton-Okounkov bodies. Illinois J. Math. 62(1–4), 271–292 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Ilyukhina, M.: Schubert Calculus and Geometry of a String Polytope for the Group \(sp_4\). Moscow State University, Diploma (2012)

    Google Scholar 

  10. Kaveh, K.: Note on cohomology rings of spherical varieties and volume polynomial. J. Lie Theory 21(2), 263–283 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Kaveh, K.: Crystal bases and Newton-Okounkov bodies. Duke Math. J. 164(13), 2461–2506 (2015)

    Article  MathSciNet  Google Scholar 

  12. Kaveh, K., Khovanskii, A.G.: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. of Math. (2) 176(2), 925–978 (2012)

    Google Scholar 

  13. Kaveh, K., Villella, E.: On a notion of anticanonical class for families of convex polytopes (2018). arXiv:1802.06674 [math.AG]

  14. Kirichenko, V.A., Smirnov, E.Y., Timorin, V.A.: Schubert calculus and Gelfand-Tsetlin polytopes. Uspekhi Mat. Nauk 67(4(406)), 89–128 (2012)

    Google Scholar 

  15. Kiritchenko, V.: Divided difference operators on polytopes. In: Schubert calculus—Osaka 2012, Advanced Studies in Pure Mathematics, vol. 71, pp. 161–184. Mathematics Society Japan, [Tokyo] (2016)

    Google Scholar 

  16. Kiritchenko, V.: Geometric mitosis. Math. Res. Lett. 23(4), 1071–1097 (2016)

    Article  MathSciNet  Google Scholar 

  17. Kiritchenko, V.: Newton-Okounkov polytopes of flag varieties. Transform. Groups 22(2), 387–402 (2017)

    Article  MathSciNet  Google Scholar 

  18. Knutson, A., Miller, E.: Gröbner geometry of Schubert polynomials. Ann. of Math. (2) 161(3), 1245–1318 (2005)

    Google Scholar 

  19. Lazarsfeld, R., Mustaţă, M.: Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. (4) 42(5), 783–835 (2009)

    Google Scholar 

  20. Littelmann, P.: Cones, crystals, and patterns. Transform. Groups 3(2), 145–179 (1998)

    Article  MathSciNet  Google Scholar 

  21. Molev, A.I.: Gelfand-Tsetlin bases for classical Lie algebras. In: Handbook of Algebra. vol. 4, Handbook of Algebra, vol. 4, pp. 109–170. Elsevier/North-Holland, Amsterdam (2006)

    Google Scholar 

  22. Okounkov, A.: Multiplicities and Newton Polytopes. In: Kirillov’s seminar on representation theory, American Mathematical Society Translations: Series 2, vol. 181, pp. 231–244. American Mathematical Society, Providence, RI (1998)

    Google Scholar 

  23. Padalko, M.: Mitosis for symplectic flag varieties. B.Sc. Thesis, National Research University Higher School of Economics (2015)

    Google Scholar 

  24. Padalko, M.: Schubert calculus and symplectic Gelfand–Zetlin polytopes. M.Sc. Thesis, National Research University Higher School of Economics (2017)

    Google Scholar 

  25. Pukhlikov, A.V., Khovanskiĭ, A.G.: The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes. Algebra i Analiz 4(4), 188–216 (1992)

    MathSciNet  MATH  Google Scholar 

  26. Totaro, B.: The torsion index of the spin groups. Duke Math. J. 129(2), 249–290 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The study has been partially funded by the Russian Academic Excellence Project ‘5–100’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Kiritchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiritchenko, V., Padalko, M. (2022). Schubert Calculus on Newton–Okounkov Polytopes. In: Kasprzyk, A.M., Nill, B. (eds) Interactions with Lattice Polytopes. ILP 2017. Springer Proceedings in Mathematics & Statistics, vol 386. Springer, Cham. https://doi.org/10.1007/978-3-030-98327-7_11

Download citation

Publish with us

Policies and ethics