Skip to main content

On Dropping the First Sobol’ Point

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods (MCQMC 2020)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 387))

Abstract

Quasi-Monte Carlo (QMC) points are a substitute for plain Monte Carlo (MC) points that greatly improve integration accuracy under mild assumptions on the problem. Because QMC can give errors that are o(1/n) as \(n\rightarrow \infty \), and randomized versions can attain root mean squared errors that are o(1/n), changing even one point can change the estimate by an amount much larger than the error would have been and worsen the convergence rate. As a result, certain practices that fit quite naturally and intuitively with MC points can be very detrimental to QMC performance. These include thinning, burn-in, and taking sample sizes such as powers of 10, when the QMC points were designed for different sample sizes. This article looks at the effects of a common practice in which one skips the first point of a Sobol’ sequence. The retained points ordinarily fail to be a digital net and when scrambling is applied, skipping over the first point can increase the numerical error by a factor proportional to \(\sqrt{n}\) where n is the number of function evaluations used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balandat, M., Karrer, B., Jiang, D.R., Daulton, S., Letham, B., Wilson, A.G., Bakshy, E.: BoTorch: Bayesian optimization in PyTorch. Technical report (2019). arXiv:1910.06403, Facebook Research

  2. Bratley, P., Fox, B.L.: Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 14(1), 88–100 (1988)

    Google Scholar 

  3. Caflisch, R.E., Morokoff, W., Owen, A.B.: Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension. J. Comput. Financ. 1(1), 27–46 (1997)

    Google Scholar 

  4. Caflisch, R.E., Moskowitz, B.: Modified Monte Carlo methods using quasi-random sequences. In: Niederreiter, H., Shiue, P.J.S. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pp. 1–16. Springer, New York (1995)

    Google Scholar 

  5. Choi, S.C.T., Hickernell, F.J., Jagadeeswaran, R., McCourt, M.J., Sorokin, A.G.: QMCPy: A Quasi-Monte Carlo Python Library (2020). https://doi.org/10.5281/zenodo.3964489, https://qmcsoftware.github.io/QMCSoftware/

  6. Choi, S.C.T., Hickernell, F.J., Jagadeeswaran, R., McCourt, M.J., Sorokin, A.G.: Quasi-Monte Carlo software. In: Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo Methods, MCQMC 2020, Springer Proceedings in Mathematics & Statistics. Springer (2022)

    Google Scholar 

  7. van der Corput, J.G.: Verteilungsfunktionen I. Nederl. Akad. Wetensch. Proc. 38, 813–821 (1935)

    Google Scholar 

  8. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, San Diego (1984)

    Google Scholar 

  9. Dick, J.: Walsh spaces containing smooth functions and Quasi-Monte Carlo rules of arbitrarily high order. SIAM J. Numer. Anal. 46(3), 1519–1553 (2008)

    Google Scholar 

  10. Dick, J.: Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands. Ann. Stat. 39(3), 1372–1398 (2011)

    Google Scholar 

  11. Dick, J., Pillichshammer, F.: Digital Sequences, Discrepancy and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  12. Faure, H.: Discrépance de suites associées à un système de numération (en dimension \(s\)). Acta Arithmetica 41, 337–351 (1982)

    Google Scholar 

  13. Frazier, P.I.: A tutorial on Bayesian optimization. Technical report (2018). arXiv:1807.02811

  14. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik 2(1), 84–90 (1960)

    Google Scholar 

  15. Hickernell, F.J.: Koksma-Hlawka Inequality. Statistics Reference Online, Wiley StatsRef (2014)

    Google Scholar 

  16. Hickernell, F.J., Lemieux, C., Owen, A.B.: Control variates for Quasi-Monte Carlo (with discussion). Stat. Sci. 20(1), 1–31 (2005)

    Google Scholar 

  17. Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19(3), 293–325 (1948)

    Google Scholar 

  18. Joe, S., Kuo, F.Y.: Constructing Sobol’ sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30(5), 2635–2654 (2008)

    Google Scholar 

  19. Kass, R.E., Carlin, B.P., Gelman, A., Neal, R.M.: Markov chain Monte Carlo in practice: a roundtable discussion. Am. Stat. 52(2), 93–100 (1998)

    Google Scholar 

  20. Keller, A., Grünschloß, L.: Parallel Quasi-Monte Carlo integration by partitioning low discrepancy sequences. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 487–498. Springer (2012). http://gruenschloss.org/parqmc/parqmc.pdf

  21. Kocis, L., Whiten, W.J.: Computational investigations of low-discrepancy sequences. ACM Trans. Math. Softw. 23(2), 266–294 (1997). https://doi.org/10.1145/264029.264064

  22. Kuo, F.Y., Nuyens, D.: Application of Quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: a survey of analysis and implementation. Found. Comput. Math. 16(6), 1631–1696 (2016)

    Google Scholar 

  23. L’Ecuyer, P.: Quasi-Monte Carlo methods with applications in finance. Financ. Stoch. 13(3), 307–349 (2009)

    Google Scholar 

  24. L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Manag. Sci. 46(9), 1214–1235 (2000)

    Google Scholar 

  25. Loh, W.L.: On the asymptotic distribution of scrambled net quadrature. Ann. Stat. 31(4), 1282–1324 (2003)

    Google Scholar 

  26. Matoušek, J.: On the L\(^2\)-discrepancy for anchored boxes. J. Complex. 14(4), 527–556 (1998)

    Google Scholar 

  27. Niederreiter, H.: Point sets and sequences with small discrepancy. Monatshefte für Mathematik 104(4), 273–337 (1987)

    Google Scholar 

  28. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, PA (1992)

    Google Scholar 

  29. Owen, A.B.: Randomly permuted \((t, m, s)\)-nets and \((t, s)\)-sequences. In: Niederreiter, H., Shiue, P.J.S. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pp. 299–317. Springer, New York (1995)

    Google Scholar 

  30. Owen, A.B.: Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34(5), 1884–1910 (1997)

    Google Scholar 

  31. Owen, A.B.: Scrambled net variance for integrals of smooth functions. Ann. Stat. 25(4), 1541–1562 (1997)

    Google Scholar 

  32. Owen, A.B.: Scrambling Sobol’ and Niederreiter-Xing points. J. Complex. 14(4), 466–489 (1998)

    Google Scholar 

  33. Owen, A.B.: Local antithetic sampling with scrambled nets. Ann. Stat. 36(5), 2319–2343 (2008)

    Google Scholar 

  34. Owen, A.B.: A constraint on extensible quadrature rules. Numerische Mathematik 1–8 (2015)

    Google Scholar 

  35. Owen, A.B.: Statistically efficient thinning of a Markov chain sampler. J. Comput. Graph. Stat. 26(3), 738–744 (2017)

    Google Scholar 

  36. Owen, A.B.: Monte Carlo Book: The Quasi-Monte Carlo Parts (2019). https://statweb.stanford.edu/~owen/mc/

  37. Owen, A.B., Rudolf, D.: A strong law of large numbers for scrambled net integration. SIAM Rev. (2020). To appear

    Google Scholar 

  38. Pan, Z., Owen, A.B.: The nonzero gain coefficients of Sobol’s sequences are always powers of two. Technical report. Stanford University (2021). arXiv:2106.10534

  39. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  40. Schürer, R., Schmid, W.C.: MinT-new features and new results. In: L’Ecuyer, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 501–512. Springer, Berlin (2009)

    Google Scholar 

  41. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford Science Publications, Oxford (1994)

    Google Scholar 

  42. Sobol’, I.M.: The distribution of points in a cube and the accurate evaluation of integrals. USSR Comput. Math. Math. Phys. 7(4), 86–112 (1967)

    Google Scholar 

  43. Sobol’, I.M.: Multidimensional Quadrature Formulas and Haar Functions. Nauka, Moscow (1969). (In Russian)

    Google Scholar 

  44. Sobol’, I.M.: Asymmetric convergence of approximations of the Monte Carlo method. Comput. Math. Math. Phys. 33(10), 1391–1396 (1993)

    Google Scholar 

  45. Sobol’, I.M., Asotsky, D., Kreinin, A., Kucherenko, S.: Construction and comparison of high-dimensional Sobol’ generators. Wilmott Mag. 2011(56), 64–79 (2011)

    Google Scholar 

  46. Surjanovic, S., Bingham, D.: Virtual library of simulation experiments: test functions and datasets (2013). https://www.sfu.ca/~ssurjano/

  47. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A.P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Cardoso, J., Reimer, J., Harrington, J., Rodríguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020)

    Google Scholar 

  48. Yue, R.X., Mao, S.S.: On the variance of quadrature over scrambled nets and sequences. Stat. Probab. Lett. 44(3), 267–280 (1999)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF under grant IIS-1837931, and a grant from Hitachi, Ltd. I thank Fred Hickernell, Pierre L’Ecuyer, Alex Keller, Max Balandat, Michael McCourt, Pamphile Roy and Sergei Kucherenko for stimulating discussions. I think Sifan Liu for catching an error in some code. Thanks to Mike Giles, Arnaud Doucet, Alex Keller and the whole team at ICMS for making MCQMC 2020 happen despite all the pandemic disruption. This paper benefited from comments of two anonymous reviewers. I thank Alex Keller for handling the proceedings volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Art B. Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Owen, A.B. (2022). On Dropping the First Sobol’ Point. In: Keller, A. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2020. Springer Proceedings in Mathematics & Statistics, vol 387. Springer, Cham. https://doi.org/10.1007/978-3-030-98319-2_4

Download citation

Publish with us

Policies and ethics