Skip to main content

Density Estimation by Monte Carlo and Quasi-Monte Carlo

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods (MCQMC 2020)

Abstract

Estimating the density of a continuous random variable X has been studied extensively in statistics, in the setting where n independent observations of X are given a priori and one wishes to estimate the density from that. Popular methods include histograms and kernel density estimators. In this review paper, we are interested instead in the situation where the observations are generated by Monte Carlo simulation from a model. Then, one can take advantage of variance reduction methods such as stratification, conditional Monte Carlo, and randomized quasi-Monte Carlo (RQMC), and obtain a more accurate density estimator than with standard Monte Carlo for a given computing budget. We discuss several ways of doing this, proposed in recent papers, with a focus on methods that exploit RQMC. A first idea is to directly combine RQMC with a standard kernel density estimator. Another one is to adapt a simulation-based derivative estimation method such as smoothed perturbation analysis or the likelihood ratio method to obtain a continuous estimator of the cumulative density function (CDF), whose derivative is an unbiased estimator of the density. This can then be combined with RQMC. We summarize recent theoretical results with these approaches and give numerical illustrations of how they improve the convergence of the mean square integrated error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asmussen, S.: Conditional Monte Carlo for sums, with applications to insurance and finance. Ann. Actuar. Sci. 12(2), 455–478 (2018)

    Google Scholar 

  2. Asmussen, S., Glynn, P.W.: Stochastic Simulation. Springer, New York (2007)

    Google Scholar 

  3. Ben Abdellah, A., L’Ecuyer, P., Owen, A., Puchhammer, F.: Density estimation by randomized Quasi-Monte Carlo. SIAM J. Uncertain. Quantif. 9(1), 280–301 (2021)

    Google Scholar 

  4. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, U.K. (2010)

    Google Scholar 

  5. Fu, M., Hu, J.Q.: Conditional Monte Carlo: Gradient Estimation and Optimization Applications. Kluwer Academic, Boston (1997)

    Google Scholar 

  6. Fu, M.C.: Sensitivity analysis in Monte Carlo simulation of stochastic activity networks. In: Alt, F.B., Fu, M.C., Golden, B.L. (eds.) Perspectives in Operations Research, Operations Research/Computer Science Interfaces Series, pp. 351–366. Springer, Boston (2006)

    Google Scholar 

  7. Glynn, P.W.: Likelihood ratio gradient estimation: an overview. In: Proceedings of the 1987 Winter Simulation Conference, pp. 366–375. IEEE Press, Piscataway, NJ (1987)

    Google Scholar 

  8. Glynn, P.W., L’Ecuyer, P.: Likelihood ratio gradient estimation for regenerative stochastic recursions. Adv. Appl. Probab. 27, 1019–1053 (1995)

    Google Scholar 

  9. Goda, T., Suzuki, K.: Recent Advances in Higher Order Quasi-Monte Carlo Methods, pp. 69–102. De Gruyter (2019)

    Google Scholar 

  10. Laub, P.J., Salomone, R., Botev, Z.I.: Monte Carlo estimation of the density of the sum of dependent random variables. Mathematics and Computers in Simulation 161, 23–31 (2019)

    Google Scholar 

  11. L’Ecuyer, P.: A unified view of the IPA, SF, and LR gradient estimation techniques. Manag. Sci. 36(11), 1364–1383 (1990)

    Google Scholar 

  12. L’Ecuyer, P.: Quasi-Monte Carlo methods with applications in finance. Financ. Stoch. 13(3), 307–349 (2009)

    Google Scholar 

  13. L’Ecuyer, P.: Randomized Quasi-Monte Carlo: an introduction for practitioners. In: Glynn, P.W., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC 2016, pp. 29–52. Springer, Berlin (2018)

    Google Scholar 

  14. L’Ecuyer, P., Munger, D.: Algorithm 958: lattice builder: a general software tool for constructing rank-1 lattice rules. ACM Trans. Math. Softw. 42(2), Article 15 (2016)

    Google Scholar 

  15. L’Ecuyer, P., Perron, G.: On the convergence rates of IPA and FDC derivative estimators. Oper. Res. 42(4), 643–656 (1994)

    Google Scholar 

  16. Puchhammer, F., L’Ecuyer, P.: Likelihood Ratio Density Estimation for Simulation Models (2022). Submitted

    Google Scholar 

  17. L’Ecuyer, P., Puchhammer, F., Ben Abdellah, A.: Monte Carlo and Quasi-Monte Carlo density estimation via conditioning. INFORMS J. Comput. (2022). To appear. See https://doi.org/10.1287/ijoc.2021.1135

  18. Lei, L., Peng, Y., Fu, M.C., Hu, J.Q.: Applications of generalized likelihood ratio method to distribution sensitivities and steady-state simulation. Discret. Event Dyn. Syst. 28(1), 109–125 (2018)

    Google Scholar 

  19. Lemieux, C., Cieslak, M., Luttmer, K.: RandQMC User’s Guide: A Package for Randomized Quasi-Monte Carlo Methods in C (2004). Software user’s guide, available at http://www.math.uwaterloo.ca/~clemieux/randqmc.html

  20. Niederreiter, H.: Random number generation and Quasi-Monte Carlo methods. In: SIAM CBMS-NSF CBMS Regional Conference Series in Mathematics, vol.63. SIAM (1992)

    Google Scholar 

  21. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Google Scholar 

  22. Peng, Y., Fu, M.C., Heidergott, B., Lam, H.: Maximum likelihood estimation by Monte Carlo simulation: towards data-driven stochastic modeling. Oper. Res. 68(6), 1896–1912 (2020)

    Google Scholar 

  23. Peng, Y., Fu, M.C., Hu, J.Q., Heidergott, B.: A new unbiased stochastic derivative estimator for discontinuous sample performances with structural parameters. Oper. Res. 66(2), 487–499 (2018)

    Google Scholar 

  24. Peng, Y., Fu, M.C., Hu, J.Q., L’Ecuyer, P., Tuffin, B.: Generalized likelihood ratio method for stochastic models with uniform random numbers as inputs (2021). Submitted manuscript

    Google Scholar 

  25. Peng, Y., Fu, M.C., Hu, J.Q., L’Ecuyer, P., Tuffin, B.: Variance reduction for generalized likelihood ratio method by conditional Monte Carlo and randomized Quasi-Monte Carlo. J. Manage. Sci. Eng. (2022). To appear

    Google Scholar 

  26. Scott, D.W.: Multivariate Density Estimation, 2nd edn. Wiley, New York (2015)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by a NSERC Discovery Grant and an IVADO Grant to P. L’Ecuyer. F. Puchhammer was also supported by Spanish and Basque governments fundings through BCAM (ERDF, ESF, SEV-2017-0718, PID2019-108111RB-I00, PID2019-104927GB-C22, BERC 2018e2021, EXP. 2019/00432, ELKARTEK KK-2020/00049), and the computing infrastructure of i2BASQUE academic network and IZO-SGI SGIker (UPV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre L’Ecuyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

L’Ecuyer, P., Puchhammer, F. (2022). Density Estimation by Monte Carlo and Quasi-Monte Carlo. In: Keller, A. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2020. Springer Proceedings in Mathematics & Statistics, vol 387. Springer, Cham. https://doi.org/10.1007/978-3-030-98319-2_1

Download citation

Publish with us

Policies and ethics