Skip to main content

Implicit Opinion Aspect Clues in Portuguese Texts: Analysis and Categorization

  • Conference paper
  • First Online:
Computational Processing of the Portuguese Language (PROPOR 2022)

Abstract

Although very useful, aspect-based sentiment analysis shows several challenges. The occurrence of implicit aspects is one of them. To improve our understanding of implicit aspects, this work analyzes their composition and categorizes the implicit aspect clues found in two corpora of opinionated texts of different domains in the Portuguese language. As results of this work, in addition to the implicit aspect typology, we present four lexicons of implicit aspect clues for different domains and the annotation of implicit aspect clues in an existing corpus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sites.google.com/icmc.usp.br/poetisa.

  2. 2.

    https://github.com/mtarcinalli/Implicit-opinion-aspect-clues-in-Portuguese-texts.

References

  1. Cruz, I., Gelbukh, A.F., Sidorov, G.: Implicit aspect indicator extraction for aspect based opinion mining. Int. J. Comput. Linguist. App. 5(2), 135–152 (2014)

    Google Scholar 

  2. Freitas, C., Motta, E., Milidiú, R.L., César, J.: Vampiro Que Brilha... Rá! Desafios Na Anotação De Opinião Em Um Corpus De Resenhas De Livros. In: XI Encontro de Linguística de Corpus (ELC 2012). São Paulo (2012)

    Google Scholar 

  3. d. Freitas, L.A., Vieira, R.: Exploring resources for sentiment analysis in Portuguese language. In: 2015 Brazilian Conference on Intelligent Systems (BRACIS), pp. 152–156, November 2015

    Google Scholar 

  4. Freitas, L.A.D., Vieira, R.: Ontology-based feature-level sentiment analysis in Portuguese reviews. Int. J. Bus. Inf. Syst. 32(1), 30–55 (2019)

    Google Scholar 

  5. Ganganwar, V., Rajalakshmi, R.: Implicit aspect extraction for sentiment analysis: A survey of recent approaches. Proc. Comput. Sci. 165, 485–491 (2019)

    Article  Google Scholar 

  6. Hartmann, N., et al.: A large corpus of product reviews in Portuguese: tackling out-of-vocabulary words. In: LREC, pp. 3865–3871 (2014)

    Google Scholar 

  7. Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A.: spaCy: industrial-strength Natural Language Processing in Python (2020)

    Google Scholar 

  8. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)

    Google Scholar 

  9. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Human Lang. Technol. 5(1), 1–167 (2012)

    Article  Google Scholar 

  10. Long, C., Zhang, J., Zhu, X.: A review selection approach for accurate feature rating estimation. In: Coling 2010: Posters, pp. 766–774 (2010)

    Google Scholar 

  11. Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)

    Article  Google Scholar 

  12. Panchendrarajan, R., Ahamed, N., Murugaiah, B., Sivakumar, P., Ranathunga, S., Pemasiri, A.: Implicit aspect detection in restaurant reviews using co-occurence of words. In: Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 128–136 (2016)

    Google Scholar 

  13. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 115–124 (2005)

    Google Scholar 

  14. Pavlopoulos, J., Androutsopoulos, I.: Aspect term extraction for sentiment analysis: new datasets, new evaluation measures and an improved unsupervised method. In: Proceedings of the 5th Workshop on Language Analysis for Social Media (LASM)@ EACL, pp. 44–52 (2014)

    Google Scholar 

  15. Pereira, D.A.: A survey of sentiment analysis in the Portuguese language. Artif. Intell. Rev. 54, 1–29 (2020)

    Google Scholar 

  16. Rana, T.A., Cheah, Y.-N.: Aspect extraction in sentiment analysis: comparative analysis and survey. Artif. Intell. Rev. 46(4), 459–483 (2016). https://doi.org/10.1007/s10462-016-9472-z

    Article  Google Scholar 

  17. Ravi, K., Ravi, V.: A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl. Based Syst. 89, 14–46 (2015)

    Article  Google Scholar 

  18. Snyder, B., Barzilay, R.: Multiple aspect ranking using the good grief algorithm. In: Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics, Proceedings of the Main Conference, pp. 300–307 (2007)

    Google Scholar 

  19. Taboada, M.: Sentiment analysis: an overview from linguistics. Ann. Rev. Linguist. 2, 325–347 (2016)

    Article  Google Scholar 

  20. Tsytsarau, M., Palpanas, T.: Survey on mining subjective data on the web. Data Mining Knowl. Disc. 24(3), 478–514 (2012)

    Article  Google Scholar 

  21. Tubishat, M., Idris, N., Abushariah, M.A.: Implicit aspect extraction in sentiment analysis: review, taxonomy, oppportunities, and open challenges. Inf. Process. Manage. 54(4), 545–563 (2018)

    Article  Google Scholar 

  22. Vargas, F.A., Pardo, T.A.S.: Clustering and hierarchical organization of opinion aspects: a corpus study. In: Proceedings of the 14th Corpus Linguistics Meeting, pp. 342–351 (2017)

    Google Scholar 

  23. Vargas, F.A., Pardo, T.A.S.: Aspect clustering methods for sentiment analysis. In: 13th International Conference on the Computational Processing of Portuguese. pp. 365–374. Canela, RS, Brazil (2018)

    Google Scholar 

  24. Vargas, F.A., Pardo, T.A.S.: Linguistic rules for fine-grained opinion extraction. In: the Workshop Proceedings of the 14th International AAAI Conference on Web and Social Media, pp. 1–6 (2020)

    Google Scholar 

  25. Yadollahi, A., Shahraki, A.G., Zaiane, O.R.: Current state of text sentiment analysis from opinion to emotion mining. ACM Comput. Surv. (CSUR) 50(2), 1–33 (2017)

    Article  Google Scholar 

  26. Yu, J., Zha, Z.J., Wang, M., Chua, T.S.: Aspect ranking: identifying important product aspects from online consumer reviews. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 1496–1505 (2011)

    Google Scholar 

  27. Zhai, Z., Liu, B., Xu, H., Jia, P.: Grouping product features using semi-supervised learning with soft-constraints. In: Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pp. 1272–1280 (2010)

    Google Scholar 

  28. Zhai, Z., Liu, B., Xu, H., Jia, P.: Clustering product features for opinion mining. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 347–354 (2011)

    Google Scholar 

  29. Zhang, Y., Zhu, W.: Extracting implicit features in online customer reviews for opinion mining. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 103–104 (2013)

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Center for Artificial Intelligence (C4AI), with support of the São Paulo Research Foundation (grant #2019/07665-4) and IBM Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus Tarcinalli Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Machado, M.T., Pardo, T.A.S., Ruiz, E.E.S., Di Felippo, A., Vargas, F. (2022). Implicit Opinion Aspect Clues in Portuguese Texts: Analysis and Categorization. In: Pinheiro, V., et al. Computational Processing of the Portuguese Language. PROPOR 2022. Lecture Notes in Computer Science(), vol 13208. Springer, Cham. https://doi.org/10.1007/978-3-030-98305-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98305-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98304-8

  • Online ISBN: 978-3-030-98305-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics