Skip to main content

Should I Buy or Should I Pass: E-Commerce Datasets in Portuguese

  • Conference paper
  • First Online:
Computational Processing of the Portuguese Language (PROPOR 2022)

Abstract

Text classification is an essential task in Natural Language Processing. The researchers and developers need data in the desired language to build new models and algorithms to develop this task. In this paper, we discuss and make available three datasets of text classification in Portuguese based on data of the B2W group, which is an important contribution to the research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/b2w-digital/b2w-reviews01 Accessed on August 18th, 2021.

  2. 2.

    Available at http://disi.unitn.it/moschitti/corpora.htm - Last Accessed December 06th, 2021.

  3. 3.

    https://github.com/yao8839836/text_gcn - Accessed on September 21st, 2021.

References

  1. Brum, H., das Graças Volpe Nunes, M.: Building a sentiment corpus of tweets in Brazilian Portuguese. In: Calzolari, N., et al. (eds.) Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA), Miyazaki, Japan, 7–12 May 2018 (2018)

    Google Scholar 

  2. Cardoso-Cachopo, A.: Improving methods for single-label text categorization. Ph.D, dissertation, Instituto Superior Tecnico, Universidade Tecnica de Lisboa (2007)

    Google Scholar 

  3. Ehrenfried, H.V., Todt, E.: Analysis of the impact of parameters in TextGCN. In: Fernandes, A.M.D.R. (ed.) Anais Computer on the Beach 2021, Virtual Conference, pp. 014–019 (2021). https://doi.org/10.14210/cotb.v12.p014-019

  4. Lu, Z., Du, P., Nie, J.-Y.: VGCN-BERT: augmenting BERT with graph embedding for text classification. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 369–382. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_25

    Chapter  Google Scholar 

  5. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL 2005, pp. 115–124 (2005). https://doi.org/10.3115/1219840.1219855

  6. Real, L., Oshiro, M., Mafra, A.: B2W-reviews01: an open product reviews corpus. In: XII Symposium in Information and Human Language Technology and Collocates Events, Salvador - Brazil, pp. 200–208, October 2019

    Google Scholar 

  7. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002). https://doi.org/10.1145/505282.505283

  8. Yang, Y., Wu, B., Li, L., Wang, S.: A joint model for aspect-category sentiment analysis with TextGCN and Bi-GRU. In: 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC), pp. 156–163 (2020). https://doi.org/10.1109/DSC50466.2020.00031

  9. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In: 33rd AAAI Conference on Artificial Intelligence (AAAI 2019), Honolulu, Hawaii, USA, pp. 7370–7377, January 2019

    Google Scholar 

Download references

Acknowledgement

This research was sponsored by FNDE/MEC and UFPR/C3SL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Varella Ehrenfried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ehrenfried, H.V., Todt, E. (2022). Should I Buy or Should I Pass: E-Commerce Datasets in Portuguese. In: Pinheiro, V., et al. Computational Processing of the Portuguese Language. PROPOR 2022. Lecture Notes in Computer Science(), vol 13208. Springer, Cham. https://doi.org/10.1007/978-3-030-98305-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98305-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98304-8

  • Online ISBN: 978-3-030-98305-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics