Skip to main content

The State-of-the-Art in the Theoretical and Practical Applications of the Digital Twins Components

  • Chapter
  • First Online:
Digital Twins in Manufacturing

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 1521 Accesses

Abstract

This chapter introduces the state-of-the-art in theoretical and practical applications of the digital twins components. Advances in manufacturing process modeling and prediction, smart technologies, energy harvesting, machine learning, the Internet of Things, edge and cloud computing have contributed significantly to the improvements of digital twins in their real-time monitoring and forecasting properties. This monograph focuses on the development of these tools beyond the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodríguez JM, Carbonell JM, Jonsén P (2020) Numerical methods for the modelling of chip formation. Arch of Comp Meth in Eng 27:387–412

    Article  Google Scholar 

  2. Rypina L, Lipinski D, Bałasz B, Kacalak W, Szatkiewicz T (2020) Analysis and modeling of the micro-cutting process of Ti-6Al-4V titanium alloy with single abrasive grain. Mater 13:5835

    Article  Google Scholar 

  3. Xub J, Deng Y, Wang C, Liang G (2021) Numerical model of unidirectional CFRP in machining: Development of an amended friction model. Compos Struct 256:113075

    Google Scholar 

  4. Lin C-H, Muliana A (2019) Micromechanics modeling of hysteretic responses of piezoelectric composites. Cre and Fat in Poly Matr Comp: 121–155

    Google Scholar 

  5. Lee J, Davari H, Singh J, Pandhare V (2018) Industrial artificial ntelligence for industry 4.0-based manufacturing systems. Manuf Lett 18:20–23

    Article  Google Scholar 

  6. Konig F, Sous C, Ouald Chaib A, Jacobs G (2021) Machine learning based anomaly detection and classification of acoustic emission events for wear monitoring in sliding bearing systems. Trib Int 155: 106811

    Google Scholar 

  7. Khoza SC, Grobl J (2019) Comparing machine learning and statistical process control for predicting manufacturing performance. EPIA: Prog in Art Intel 108–119

    Google Scholar 

  8. El Mazgualdi C, Masrour T, El Hassani I, Khdoudi A (2021) Machine learning for KPIs prediction: a case study of the overall equipment effectiveness within the automotive industry. Soft Comp 25:2891–2909

    Article  Google Scholar 

  9. Hartmann C, Opritescu D, Volk W (2019) An artificial neural network approach for tool path generation in incremental sheet metal free-forming. J Intell Manuf 30:757–770

    Article  Google Scholar 

  10. Dib MA, Oliveira NJ, Marques AE, Oliveira MC, Fernandes JV, Ribeiro BM (2020) Single and ensemble classifiers for defect prediction in sheet metal forming under variability. Neur Comp Appl 12335–12349

    Google Scholar 

  11. Yang Z, Zhu L, Zhang G, Ni C, Lin B (2020) Review of ultrasonic vibration-assisted machining in advanced materials, Int J Mach Tools and Man 156: 103594

    Google Scholar 

  12. Zheng L, Chen W, Huo D (2020) Review of vibration devices for vibration-assisted machining. Int J Adv Man Techn 108:1631–1651

    Article  Google Scholar 

  13. Jung H, Hayasaka T, Shamoto E (2018) Study on process monitoring of elliptical vibration cutting by utilizing internal data in ultrasonic elliptical vibration device. Int J of Prec Eng and Manu-Green Techn 5(5):571–581

    Article  Google Scholar 

  14. Liu X, Wu D, Zhang J, Hu X, Cui P (2019) Analysis of surface texturing in radial ultrasonic vibration-assisted turning. J Mat Proc Techn 267:186–195

    Article  Google Scholar 

  15. Shen X-H, Xu G-F (2018) Study of milling force variation in ultrasonic vibration-assisted end milling. Mat Manu Proc 33(6):644–650

    Article  Google Scholar 

  16. Gao J, Caliskan H, Altintas Y (2019) Sensorless control of a three-degree-of-freedom ultrasonic vibration tool holder. Prec Eng 58:47–56

    Article  Google Scholar 

  17. Toyabur RM, Salauddin M, Park JY (2017) Design and experiment of piezoelectric multimodal energy harvester for low frequency vibration. Cer Int 43:S675–S681

    Article  Google Scholar 

  18. Wang F, Sun X, Xu J (2018) A novel energy harvesting device for ultralow frequency excitation. Ener 151:250–260

    Article  Google Scholar 

  19. Xu M (2018) Li X Stochastic averaging for bistable vibration energy harvesting system. Int J Mech Sci 141:206–212

    Article  Google Scholar 

  20. Wang H, Mao M, Liu Y, Qin H, Zhang M, Zhao W (2019) Impact energy harvesting system using mechanical vibration frequency stabilizer. Smart Mat Stru 28: 075006

    Google Scholar 

  21. Borowiec M, Gawryluk J, Bochenski M (2021) Influence of mechanical couplings on the dynamical behavior and energy harvesting of a composite structure. Polym 13(1):66

    Article  Google Scholar 

  22. Wang L, Ding J, Jiang Z, Luo G, Zhao L, Lu D, Yang X, Ryutaro M (2019) A packaged piezoelectric vibration energy harvester with high powerand broadband characteristics. Sen Act A 295:629–636

    Article  Google Scholar 

  23. Khazaee M, Rezaniakolaie A, Moosavian A, Rosendahl L (2019) A novel method for autonomous remote condition monitoring of rotating machines using piezoelectric energy harvesting approach. Sen Act A 295:37–50

    Article  Google Scholar 

  24. Xu X, Han M, Nagarajan SM, Anandhan P (2020) Industrial internet of things for smart manufacturing applications using hierarchical trustful resource assignment. Comp Comm 160:423–430

    Article  Google Scholar 

  25. Saqlain M, Piao M, Shim Y, Lee JY (2019) Framework of an IoT-based industrial data management for smart manufacturing. J. Sensor Actuat Netw 8(2):1–21

    Google Scholar 

  26. Yang H, Kumara S, Satish T.S. Bukkapatnam STS, Tsung F (2019) The internet of things for smart manufacturing: A review. 26. Rehman MH, Yaqoob I, Salah K, Imran M, Jayaraman PP, Perera C (2019) The role of big data analytics in industrial Internet of Things, Fut Gen Comp Syst 99, pp. 247-259

    Google Scholar 

  27. Lu Y, Xu LD (2018) Internet of Things (IoT) cybersecurity research: a review of current research topics. IEEE Intern Thin J 6(2):2103–2115

    Article  Google Scholar 

  28. Sun W, Liu J, Yue Y (2019) AI-enhanced offloading in edge computing: when machine learning meets industrial IoT. IEEE Netw 33(5):68–74

    Article  Google Scholar 

  29. Li H, Ota K, Dong M (2018) Learning IoT in edge: deep learning for the Internet of Things with edge computing. IEEE Netw 32(1):96–101

    Article  Google Scholar 

  30. Shahbazi Z, Byun Y-C (2021) Improving transactional data system based on an edge computing–blockchain–machine learning integrated framework. Proc 9(92):1–20

    Google Scholar 

  31. De Brito MS, Hoque S, Steinke R, Willner A, Magedanz T (2017) Application of the fog computing paradigm to smart factories and cyber-physical systems. Trans Emerg Tel Tech 29(4) e3184: 1–14

    Google Scholar 

  32. Qi Q, Zhao D, Liao T-W, Tao F (2018) Modeling of cyber-physical systems and digital twin based on edge computing, fog computing and cloud computing towards smart manufacturing. ASME Int Man Sci Eng Conf Proc 7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vytautas Ostaševičius .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ostaševičius, V. (2022). The State-of-the-Art in the Theoretical and Practical Applications of the Digital Twins Components. In: Digital Twins in Manufacturing. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-98275-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98275-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98274-4

  • Online ISBN: 978-3-030-98275-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics