Skip to main content

Robotic Snap-fit Assembly with Success Identification Based on Force Feedback

  • 815 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13207)

Abstract

Snap-fit assembly is a standard method in manufacturing to join mainly plastic parts together without any additional processing. However, most of these assemblies are carried out by human workers as they are able to recognize whether the operation is executed correctly. This work aims to improve a robotic snap-fit assembly and replace humans in the process. It is achieved by force measuring using the sensor at the end of the robotic arm. For the purpose of the work, the custom made snap joint was designed in various variants. A set of features was established to enable the classification of obtained signals. The features were tested on a created dataset consisting of measured signals of the four primary cases that may occur during the assembly. This solution provides a possible expansion to create a framework with a selected classification algorithm for the autonomous classification of measured signals.

Keywords

  • Snap-fit assembly
  • Industrial robot
  • Force feedback
  • Classification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-98260-7_9
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-98260-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

References

  1. Ifr presents world robotics report 2020 (2020). https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe

  2. Chan, Y., Yu, H., Khurshid, R.P.: Effects of force-torque and tactile haptic modalities on classifying the success of robot manipulation tasks. In: 2019 IEEE World Haptics Conference (WHC), pp. 586–591 (2019). https://doi.org/10.1109/WHC.2019.8816131

  3. Di Lello, E., Klotzbücher, M., De Laet, T., Bruyninckx, H.: Bayesian time-series models for continuous fault detection and recognition in industrial robotic tasks. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5827–5833 (2013). https://doi.org/10.1109/IROS.2013.6697200

  4. Doltsinis, S., Krestenitis, M., Doulgeri, Z.: A machine learning framework for real-time identification of successful snap-fit assemblies. IEEE Trans. Autom. Sci. Eng. 1–11 (2019). https://doi.org/10.1109/TASE.2019.2932834

  5. Genc, S., Messler, Robert W., J., Gabriele, G.A.: A hierarchical classification scheme to define and order the design space for integral snap-fit assembly. Res. Eng. Design 10(2), 94–106 (1998). https://www.proquest.com/scholarly-journals/hierarchical-classification-scheme-define-order/docview/2262571747/se-2?accountid=17115. copyright - Research in Engineering Design is a copyright of Springer, (1998). All Rights Reserved. Accessed 24 July 2019

  6. Hayami, Y., Wan, W., Koyama, K., Shi, P., Rojas, J., Harada, K.: Error identification and recovery in robotic snap assembly (2021)

    Google Scholar 

  7. Huang, J., Di, P., Fukuda, T., Matsuno, T.: Model-based robust online fault detection for mating process of electric connectors in robotic wiring harness assembly systems. In: 2007 International Symposium on Micro-NanoMechatronics and Human Science, pp. 556–563 (2007). https://doi.org/10.1109/MHS.2007.4420916

  8. Huang, J., Fukuda, T., Matsuno, T.: Model-based intelligent fault detection and diagnosis for mating electric connectors in robotic wiring harness assembly systems. IEEE/ASME Trans. Mechatron. 13(1), 86–94 (2008). https://doi.org/10.1109/TMECH.2007.915063

    CrossRef  Google Scholar 

  9. Huang, J., Wang, Y., Fukuda, T.: Set-membership-based fault detection and isolation for robotic assembly of electrical connectors. IEEE Trans. Autom. Sci. Eng. 1–12 (2016). https://doi.org/10.1109/TASE.2016.2602319

  10. Karlsson, M., Robertsson, A., Johansson, R.: Detection and control of contact force transients in robotic manipulation without a force sensor, pp. 1–9 (2018). https://doi.org/10.1109/ICRA.2018.8461104

  11. Koveos, Y., Papageorgiou, D., Doltsinis, S., Doulgeri, Z.: A fast robot deployment strategy for successful snap assembly (2016). https://doi.org/10.1109/IRIS.2016.8066070

  12. Luo, W., Rojas, J., Guan, T., Harada, K., Nagata, K.: Cantilever snap assemblies failure detection using SVMs and the RCBHT. In: 2014 IEEE International Conference on Mechatronics and Automation, pp. 384–389 (2014). https://doi.org/10.1109/ICMA.2014.6885728

  13. Rodriguez, A., Bourne, D., Mason, M., Rossano, G., Wang, J.: Failure detection in assembly: force signature analysis, pp. 210–215 (2010). https://doi.org/10.1109/COASE.2010.5584452

  14. Rojas, J., et al.: A constraint-based motion control strategy for cantilever snap assemblies. In: 2012 IEEE International Conference on Mechatronics and Automation, pp. 1815–1821 (2012). https://doi.org/10.1109/ICMA.2012.6285097

  15. Rojas, J., et al.: Probabilistic state verification for snap assemblies using the relative-change-based hierarchical taxonomy. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 96–103 (2012). https://doi.org/10.1109/HUMANOIDS.2012.6651505

  16. Rojas, J., et al.: A relative-change-based hierarchical taxonomy for cantilever-snap assembly verification. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 356–363 (2012). https://doi.org/10.1109/IROS.2012.6385604

  17. Rojas, J., Harada, K., Onda, H., Yamanobe, N., Yoshida, E., Nagata, K.: Early failure characterization of cantilever snap assemblies using the PA-RCBHT. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3370–3377 (2014). https://doi.org/10.1109/ICRA.2014.6907344

  18. Rusli, L., Luscher, A., Sommerich, C.: Force and tactile feedback in preloaded cantilever snap-fits under manual assembly. Int. J. Ind. Ergon. 40(6), 618–628 (2010). https://doi.org/10.1016/j.ergon.2010.05.005. https://www.sciencedirect.com/science/article/pii/S0169814110000533

  19. Rónai, L., Szabó, T.: Snap-fit assembly process with industrial robot including force feedback. Robotica 38(2), 317–336 (2020). https://www.proquest.com/scholarly-journals/snap-fit-assembly-process-with-industrial-robot/docview/2336208309/se-2?accountid=17115. copyright - \({\copyright }\) Cambridge University Press 2019; Last updated - 2020–01-13

  20. Vejlupek, J., Grepl, R., Matějásko, M., Zouhar, F.: Automotive fuel pump fault detection based on current ripple FFT and changes in magnetic field, 2013(3), 130–138 (2013)

    Google Scholar 

Download references

Acknowledgement

This research was funded by the Faculty of Mechanical Engineering, Brno University of Technology under the projects FSI-S-20-6407: “Research and development of methods for simulation, modelling a machine learning in mechatronics”, and FV-21-26: “Robotic assembly using force interaction”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Radil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Radil, F., Adámek, R., Dobossy, B., Krejčí, P. (2022). Robotic Snap-fit Assembly with Success Identification Based on Force Feedback. In: , et al. Modelling and Simulation for Autonomous Systems. MESAS 2021. Lecture Notes in Computer Science, vol 13207. Springer, Cham. https://doi.org/10.1007/978-3-030-98260-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98260-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98259-1

  • Online ISBN: 978-3-030-98260-7

  • eBook Packages: Computer ScienceComputer Science (R0)