Skip to main content

A Coarse-to-Fine Framework for Head and Neck Tumor Segmentation in CT and PET Images

  • Conference paper
  • First Online:
Head and Neck Tumor Segmentation and Outcome Prediction (HECKTOR 2021)

Abstract

Radiomics analysis can help patients suffered from head and neck (H&N) cancer customize tailoring treatments. It requires a large number of segmentation of the H&N tumor area in PET and CT images. However, the cost of manual segmentation is extremely high. In this paper, we propose a coarse-to-fine framework to segment the H&N tumor automatically in FluoroDeoxyGlucose (FDG)-Positron Emission Tomography (PET) and Computed Tomography (CT) images. Specifically, we trained three 3D-UNets with residual blocks to make coarse stage, fine stage and refined stage predictions respectively. Experiments show that such a training framework can improve the segmentation quality step by step. We evaluated our framework with Dice Similarity Coefficient (DSC) and Hausdorff Distance at 95% (HD95) of 0.7733 and 3.0882 respectively in the task 1 of the HEad and neCK TumOR segmentation and outcome prediction in PET/CT images (HECKTOR2021) Challenge and ranked second.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gillies, R.J., et al.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2016)

    Google Scholar 

  2. Vallières, M., et al.: Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 7(1), 1–14 (2017)

    Google Scholar 

  3. Bogowicz, M., et al.: Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma. Acta Oncologica 56(11), 1531–1536 (2017)

    Google Scholar 

  4. Andrearczyk, V., et al.: Automatic segmentation of head and neck tumors and nodal metastases in PET-CT scans. In: Medical Imaging with Deep Learning, pp. 33–43. PMLR (2020)

    Google Scholar 

  5. Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336 (2022)

    Article  Google Scholar 

  6. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2020: automatic head and neck tumor segmentation in PET/CT. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 1–21. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_1

    Chapter  Google Scholar 

  7. Iantsen, A., Visvikis, D., Hatt, M.: Squeeze-and-excitation normalization for automated delineation of head and neck primary tumors in combined PET and CT images. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 37–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_4

    Chapter  Google Scholar 

  8. Chen, H., Chen, H., Wang, L.: Iteratively refine the segmentation of head and neck tumor in FDG-PET and CT images. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 53–58. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_6

    Chapter  Google Scholar 

  9. Isensee, F., et al.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  10. Diakogiannis, Foivos I., et al.: ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogrammetry Remote Sens. 162, 94–114 (2020)

    Google Scholar 

  11. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  12. Chen, H., Qian, D., Liu, W., Li, H., Wang, L.: An enhanced coarse-to-fine framework for the segmentation of clinical target volume. In: Shusharina, N., Heinrich, M.P., Huang, R. (eds.) MICCAI 2020. LNCS, vol. 12587, pp. 34–39. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71827-5_4

    Chapter  Google Scholar 

  13. Ulyanov, D., et al.: Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  14. He, Kaiming, et al.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  15. Kingma, D.P., et al.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

An, C., Chen, H., Wang, L. (2022). A Coarse-to-Fine Framework for Head and Neck Tumor Segmentation in CT and PET Images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2021. Lecture Notes in Computer Science, vol 13209. Springer, Cham. https://doi.org/10.1007/978-3-030-98253-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98253-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98252-2

  • Online ISBN: 978-3-030-98253-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics