Skip to main content

Approaches and Methodologies on Mapping Vegetation Cover and Biodiversity Status Using Remote Sensing and Spatial Analysis: A Systematic Review

  • Chapter
  • First Online:
Conservation, Management and Monitoring of Forest Resources in India

Abstract

Mapping vegetation cover and biodiversity status using remote sensing and spatial technologies has transformed the field of natural resource management. As anthropogenic activities have led to unprecedented changes in biodiversity and vegetation cover throughout the world, these technologies have become very significant in impact assessment and management of these natural resources. Various methods have been used in vegetation and biodiversity mapping especially using remote sensing and special techniques, but there are few review studies covering the entire field of vegetation and biodiversity mapping. The present study has reviewed the various methods and approaches used for mapping vegetation cover. It has tracked its evolution since geospatial technologies have been used for the first time in mapping vegetation till today when advanced models like decision tree and redundancy analysis are being used. This study has used a systematic review protocol for a set of 70 peer-reviewed case studies, which highlight the key analysis, trends, and research paths that have emerged since the evolution of geospatial techniques. The study has also examined the emerging trends and gaps in the existing research on vegetation mapping and biodiversity status. The paper is framed in such a way that its first part deals with the conceptual framework of vegetation mapping and biodiversity status. This part also deals with some related case studies on the important biodiversity regions of the world. The second part of the paper discusses the methods, models, databases, and approaches used in vegetation mapping and biodiversity status in selected case studies. The prime objective of the study was to outline the future trends in vegetation mapping. The review study concludes that vegetation mapping studies throughout the world are primarily case studies by their very nature. These case studies have in many ways become an evolving tool for better conservation and management of forest and biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, R., Wani, G. F., Ahmad, S. T., Sahana, M., Singh, H., & Ahmed, P. (2021). A Review of Glacial Lake Expansion and Associated Glacial Lake Outburst Floods in the Himalayan Region. Earth Systems and Environment, 1-14.

    Google Scholar 

  • Akar O, Gungor O (2012) Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation 1(2):105-112.

    Article  Google Scholar 

  • Areendran G, Raj K, Sharma A, Bora PJ, Sarmah A, Sahana M, Ranjan K (2020a) Documenting the land use pattern in the corridor complexes of Kaziranga National Park using high resolution satellite imagery. Trees, Forests and People 2: 100039. doi:https://doi.org/10.1016/j.tfp.2020.100039

    Article  Google Scholar 

  • Areendran G, Sahana M, Raj K, Kumar R, Sivadas A, Kumar A, Deb S, Dutta Gupta V (2020b) A systematic review on high conservation value assessment (HCVs): Challenges and framework for future research on conservation strategy. Science of The Total Environment 709: 135425. doi:https://doi.org/10.1016/j.scitotenv.2019.135425

    Article  CAS  Google Scholar 

  • Bartholome, E., & Belward, A. S. (2005). GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26(9), 1959-1977.

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377

    Article  Google Scholar 

  • Bertachhi A, Giannini V, Di Franco C, Silvestri N (2019) Using unmanned aerial vehicles for vegetation mapping and identification of botanical species in wetlands. Landscape and Ecological Engineering 15: 231-240. doi:https://doi.org/10.1007/s11355-018-00368-1

    Article  Google Scholar 

  • Bhatnagar S, Gill L., Ghosh B (2020) Drone Image Segmentation Using Machine and Deep Learning for Mapping Raised Bog Vegetation Communities. Remote Sensing 12(16): 2602. doi:https://doi.org/10.3390/rs12162602

    Article  Google Scholar 

  • Brown, M., De Beurs, K., Marshall, M., 2012. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years. Remote Sens. Environ. 126, 174–183.

    Article  Google Scholar 

  • Chakraborty, S., Maity, I., Patel, P. P., Dadashpoor, H., Pramanik, S., Follman, A., Novotny, J., & Roy, U. (2021a). Spatio-temporal patterns of urbanization in the Kolkata Urban Agglomeration: A dynamic spatial territory-based approach. Sustainable Cities and Society, 67, 102715. doi:https://doi.org/10.1016/j.scs.2021.102715

    Article  Google Scholar 

  • Chakraborty, S., Pramanik, S., Follmann, A., Giri, B., Mondal, B., Patel, P.P., Maity, I., Das., Punia, M., Sahana, M. (2021b) Dominant urban form and its relation to nighttime land surface temperature in the rapidly urbanizing National Capital Region of India. Urban Climate 40: 101002. doi:https://doi.org/10.1016/j.uclim.2021.101002

    Article  Google Scholar 

  • Chatterjee, S., Patel, P.P. (2016): Quantifying Landscape Structure and Ecological Risk Analysis in Subarnarekha Sub-watershed, Ranchi. In: Mondol, D.K. (ed.) Application of Geospatial Technology for Sustainable Development, University of North Bengal, India, North Bengal University Press, Raja Rammohunpur, pp 54-76.

    Google Scholar 

  • Chen, H. Y., & Taylor, A. R. (2012). A test of ecological succession hypotheses using 55-year time-series data for 361 boreal forest stands. Global Ecology and Biogeography, 21(4), 441-454.

    Article  Google Scholar 

  • Cihlar, J. (2000). Land cover mapping of large areas from satellites: status and research priorities. International journal of remote sensing, 21(6-7), 1093-1114.

    Article  Google Scholar 

  • Claussen M, Gayler V (1998) The greening of Sahara during the Mid-Holocene: results of an interactive Atmosphere Biome Model. Glob Ecol Biogeogr Lett 6:369–377. doi:https://doi.org/10.2307/2997337

    Article  Google Scholar 

  • Cline BB, Hunter Jr ML (2013) Different open-canopy vegetation types affect matrix permeability for a dispersing forest amphibian. Journal of Applied Ecology 51(2): 319-329. doi:https://doi.org/10.1111/1365-2664.12197

    Article  Google Scholar 

  • Colditz, R. R., Wehrmann, T., Bachmann, M., Steinnocher, K., Schmidt, M., Strunz, G., & Dech, S. (2006). Influence of image fusion approaches on classification accuracy: a case study. International Journal of Remote Sensing, 27(15), 3311-3335.

    Article  Google Scholar 

  • Das, S., Shit, P.K., Patel, P.P. (2021) Ecosystem services value assessment and forecasting using integrated machine learning algorithm and CA-Markov model: an empirical investigation of an Asian megacity. Geocarto International. doi:https://doi.org/10.1080/10106049.2021.2002424

  • de Castro AI, Shi Y, Maja JM, Pena JM (2020) UAVs for Vegetation Monitoring: Overview and Recent Scientific Contributions. Remote Sensing 13(11): 2139. doi:https://doi.org/10.3390/rs13112139

    Article  Google Scholar 

  • de Paula Silva J, Rodrigues C, Pereira DI (2015) Mapping and Analysis of Geodiversity Indices in the Xingu River Basin, Amazonia, Brazil. Geoheritage 7: 337-350. doi:https://doi.org/10.1007/s12371-014-0134-8

    Article  Google Scholar 

  • Dickinson, R. E., & Henderson-Sellers, A. (1988). Modelling tropical deforestation: A study of GCM land-surface parametrizations. Quarterly Journal of the Royal Meteorological Society, 114(480), 439-462.

    Article  Google Scholar 

  • Dragut L, Walz U, Thomas BT (2010) The third and fourth dimensions of landscape: towards conceptual models of topographically complex landscapes. Landscape Online 22:1–10

    Article  Google Scholar 

  • Dung, N. B., Long, N. Q., Goyal, R., An, D. T., & Minh, D. T. (2021). The Role of Factors Affecting Flood Hazard Zoning Using Analytical Hierarchy Process: A Review. Earth Systems and Environment, 1-17.

    Google Scholar 

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6(8): 439-447. doi:https://doi.org/10.1890/070062

    Article  Google Scholar 

  • Evangelista, P., Young, N., Vorster, T., West, A., Hatcher, E., Woodward, B., Anderson, R., Girma, R., 2018. Mapping Native and Non-native Riparian Vegetation in the Colorado River Watershed. Colorado State University. Available at https://mountainscholar.org/bitstream/handle/10217/187177/FACF_Young_WWF_FinalReport_REVISED.pdf?sequence=5andisAllowed=y (accessed on 04.04.2020)

    Google Scholar 

  • Fensholt, R., Rasmussen, K., Nielsen, T.T., Mbow, C., 2009. Evaluation of earth observation based long term vegetation trends - intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 113, 1886–1898.

    Article  Google Scholar 

  • Fernandes, M. R., Aguiar, F. C., Ferreira, M.T., 2011. Assessing Riparian Vegetation Structure and the Influence of Land Use Using Landscape Metrics and Geostatistical Tools. Landscape and Urban Planning 99(2), 166–77. doi:https://doi.org/10.1016/j.landurbplan.2010.11.001

    Article  Google Scholar 

  • Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Franklin, J. (1995). Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in physical geography, 19(4), 474-499.

    Article  Google Scholar 

  • Grace, J., Jose, J. S., Meir, P., Miranda, H. S., & Montes, R. A. (2006). Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33(3), 387-400.

    Article  Google Scholar 

  • Graham CH, Hijmans RJ (2006) A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography 15(6): 578-587. doi:https://doi.org/10.1111/j.1466-8238.2006.00257.x

    Article  Google Scholar 

  • Guo Y, Han S, Li Y, Zhang C, Bai Y (2018) K-Nearest Neighbor combined with guided filter for hyperspectral image classification. Procedia Computer Science 129:159-165.

    Article  Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystem 1:143–156

    Article  Google Scholar 

  • Hansen, M. C., DeFries, R. S., Townshend, J. R., & Sohlberg, R. (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. International journal of remote sensing, 21(6-7), 1331-1364.

    Article  Google Scholar 

  • He C, Zhang Q, Li Y, et al. (2005) Zoning grassland protection area using remote sensing and cellular automata modeling—a case study in Xilingol steppe grassland in northern China. J Arid Environ 63:814–26.

    Article  Google Scholar 

  • Helmer, E., Ramos, O., López, T. D. M., Quinones, M., & Diaz, W. (2002). Mapping the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity hotspot. Caribbean Journal of Science, Vol. 38, No. 3-4, 165–183,.

    Google Scholar 

  • Herold M, Mayaux P, Woodcock C & Baccini A, & Schmullius C (2008). Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sensing of Environment. 112, 2538–2556. https://doi.org/10.1016/j.rse.2007.11.013

  • Heywood, V. H., & Watson, R. T. (1995). Global biodiversity assessment (Vol. 1140). Cambridge: Cambridge university press.

    Google Scholar 

  • Hobbs, R. J. (1993). Effects of landscape fragmentation on ecosystem processes in the Western Australian wheatbelt. Biological conservation, 64(3), 193-201.

    Article  Google Scholar 

  • Hoekman DH, Quinones JM (2000) Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in Colombian Amazon. IEEE Trans Geosci Remote Sens 38:685–696

    Article  Google Scholar 

  • Htitiou A, Boudhar A, Lebrini Y, Hadria R, Lionboui H, Elmansouri L, Tychon B, Benabdelouahab T (2019) The Performance of Random Forest Classification Based on Phenological Metrics Derived from Sentinel-2 and Landsat 8 to Map Crop Cover in an Irrigated Semi-arid Region. Remote Sensing in Earth Systems Sciences 2:208-224.

    Article  Google Scholar 

  • Iverson LR, Prasad AM, Prasad AM (1998) Estimating regional plant biodiversity with GIS modelling. Diversity and Distributions 4: 49-61.

    Article  Google Scholar 

  • Jung, M., Henkel, K., Herold, M., & Churkina, G. (2006). Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment, 101(4), 534-553.

    Article  Google Scholar 

  • Karlsson B, Van Dyck H (2005) Does habitat fragmentation affect temperature-related life-history traits? A laboratory test with a woodland butterfly. Proceedings of the Royal Society: Biological Sciences 272 (1569): 1257-1263. doi:https://doi.org/10.1098/rspb.2005.3074

    Article  Google Scholar 

  • Keneko K, Nohara S (2014) Review of Effective Vegetation Mapping Using the UAV (Unmanned Aerial Vehicle) Method. Journal of Geographic Information System 6(6): 733-742. doi:https://doi.org/10.4236/jgis.2014.66060

    Article  Google Scholar 

  • Kilpeläinen, P., & Tokola, T. (1999). Gain to be achieved from stand delineation in LANDSAT TM image-based estimates of stand volume. Forest Ecology and Management, 124(2-3), 105-111.

    Article  Google Scholar 

  • Körner, C. (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115(4), 445-459.

    Article  Google Scholar 

  • Körner, C. (2003). Carbon limitation in trees. Journal of ecology, 91(1), 4-17.

    Article  Google Scholar 

  • Küchler A.W. (1988) The Classification of Vegetation. In: Küchler A.W., Zonneveld I.S. (eds) Vegetation mapping. Handbook of vegetation science, vol 10. Springer, Dordrecht. doi:https://doi.org/10.1007/978-94-009-3083-4_7

    Chapter  Google Scholar 

  • Kuenzer, C., Dech, S., Wagner, W., 2015a. Remote sensing time series revealing land surface dynamics: Status quo and the pathway ahead. Remote Sensing Time Series. Springer, pp. 1–24.

    Google Scholar 

  • Kuenzer, C., Klein, I., Ullmann, T., Georgiou, E. F., Baumhauer, R., &Dech, S. (2015b). Remote sensing of river delta inundation: Exploiting the potential of coarse spatial resolution, temporally-dense MODIS time series. Remote Sensing, 7(7), 8516-8542.

    Article  Google Scholar 

  • Langley JA, Chapman SK, La Pierre KJ, Avolio M, Bowman WD, Johnson DS, Isbell F, Wilcox KR, Foster BL, Hovenden MJ, Knapp AK, Koerner SE, Lortie CJ, Megonigal JP, Newton CD, Reich PB, Smith MD, Suttle KB, Tilman D (2018) Ambient changes exceed treatment effects on plant species abundance in global change experiments. Global Change Biology 24(12): 5668-5679. doi:https://doi.org/10.1111/gcb.14442

    Article  Google Scholar 

  • Latimer CE, Cooper SJ, Karasov WH, Zuckerberg B (2018) Does habitat fragmentation promote climate-resilient phenotypes? Oikos 127(8): 1069-1080. doi:https://doi.org/10.1111/oik.05111

    Article  Google Scholar 

  • Li, L., Ustin, S. L., & Lay, M. (2005). Application of multiple end member spectral mixture analysis (MESMA) to AVIRIS imagery for coastal salt marsh mapping: a case study in China Camp, CA, USA. International Journal of Remote Sensing, 26(23), 5193-5207.

    Article  Google Scholar 

  • Majhi, A., Shaw, R., Mullick, K., Patel, P.P. (2021) Towards improved USLE-based soil erosion modelling in India: A review of prevalent pitfalls and implementation of exemplar methods. Earth-Science Reviews 221, 103786. doi:https://doi.org/10.1016/j.earscirev.2021.103786

    Article  Google Scholar 

  • Mandal J, Patel PP, Samanta S (2021) Examining the expansion of Urban Heat Island effect in the Kolkata Metropolitan Area and its vicinity using multi-temporal MODIS satellite data. Advances in Space Research. doi:https://doi.org/10.1016/j.asr.2021.11.040

  • Manríquez H, Mansilla P, Figueroa-Sterquel R, Moreira-Muñoz A (2018) Geodiversity meets Biodiversity: a landscape approach for biogeocultural conservation and governance in Mediterranean central Chile. eco.mont: Journal on Protected Mountain Areas Research and Management 11(1): S43-48. doi:https://doi.org/10.1553/eco.mont-11-1s43

    Article  Google Scholar 

  • McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. General Technical Report (GTR) PNW-GTR-351, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland. doi:https://doi.org/10.2737/PNW-GTR-351

  • McKerrow AJ, Tarr NM, Rubino MJ, Williams SG (2018) Patterns of species richness hotspots and estimates of their protection are sensitive to spatial resolution. Diversity and Distributions 24(10): 1464-1477. doi:https://doi.org/10.1111/ddi.12779

    Article  Google Scholar 

  • Michez, A., Piegay, H., Jonathan, L., Claessens, H., Lejeune, P., 2016a. Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery. International Journal of Applied Earth Observation and Geoinformation 44(1), 88-94. doi:https://doi.org/10.1016/S0169-2046(03)00115-4

    Article  Google Scholar 

  • Michez, A., Piegay, H., Lisein, J., Claessens, H., Lejeune, P., 2016b. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environmental Monitoring and Assessment 188(3), 146. doi:https://doi.org/10.1007/s10661-015-4996-2

    Article  Google Scholar 

  • Mishra, N.B., Crews, K.A., Neeti, N., Meyer, T., Young, K.R., 2015.MODIS derived vegetation greenness trends in African Savanna: deconstructing and localizing the role of changing moisture availability, fire regime and anthropogenic impact. Remote Sens. Environ. 169, 192–204.

    Google Scholar 

  • Mondal S., Patel, P.P. (2020) Implementing Vetiver grass-based riverbank protection programmes in rural West Bengal, India. Natural Hazards 103: 1051-1076. doi:https://doi.org/10.1007/s11069-020-04025-5

    Article  Google Scholar 

  • Mondal, S., Patel, P.P. (2018): Examining the utility of river restoration approaches for flood mitigation and channel stability enhancement: a recent review. Environmental Earth Sciences, 77: 195. doi:https://doi.org/10.1007/s12665-018-7381-y

    Article  Google Scholar 

  • Mondal, S., Patel, P.P. (2021) Mapping, Measuring and Modelling Common Fluvial Hazards in Riparian Zones: A Brief Review of Relevant Concepts and Methods. In: Shit, P.K., Pourghasemi H.R., Bhunia, G.S., Das, P., Narsimha, A. (eds.) Geospatial Technology for Environmental Hazards. Springer, Cham, pp. 353-389. doi:https://doi.org/10.1007/978-3-030-75197-5_16

    Chapter  Google Scholar 

  • Mukherjee J., Patel P.P. (2022) Landscape Characterization using Geomorphometric Parameters for a Small Sub-Humid River Basin of the Chota Nagpur Plateau, Eastern India. In: Shit P.K., Bera B., Islam A., Ghosh S., Bhunia G.S. (eds) Drainage Basin Dynamics. Geography of the Physical Environment. Springer, Cham. doi:https://doi.org/10.1007/978-3-030-79634-1_6

    Chapter  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997a) Increased plant growth in the northern latitudes from 1981-1991. Nature 386:698–702

    Article  CAS  Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., &Nemani, R. R. (1997b). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386(6626), 698-702.

    Article  CAS  Google Scholar 

  • Nelson ML, Brewer CK, Solem, SJ, (eds.) (2015) Existing Vegetation Classification, Mapping, and Inventory Technical guide, version 2.0. General Technical Report WO–90, U.S. Department of Agriculture, Forest Service, Ecosystem Management Coordination Staff, Washington, DC.

    Google Scholar 

  • Nguyen, U., Glenn, E. P., Dang, T. D., Pham, L. T. H., 2018. Mapping vegetation types in semi-arid riparian regions using random forest and object-based image approach: A case study of the Colorado River Ecosystem, Grand Canyon, Arizona. Ecological Informatics 50, 43-50. doi:https://doi.org/10.1016/j.ecoinf.2018.12.006

    Article  Google Scholar 

  • Novoa, J., Chokmani, K., Lhissou, R., 2018. A novel index for assessment of riparian strip efficiency in agricultural landscapes using high spatial resolution satellite imagery. Science of the Total Environment 644, 1439-1451. doi:https://doi.org/10.1016/j.scitotenv.2018.07.069

    Article  CAS  Google Scholar 

  • Oladejo, S.O. (2015). Land Use/Land Cover and Biodiversity status of Okomu Forest Reserve. 10.13140/RG.2.1.3563.1441. https://www. researchgate.net

    Google Scholar 

  • Omasa K, Hosoi F, Konishi A (2007) 3D lidar imaging for detecting and understanding plant responses and canopy structure. Journal of Experimental Botany 58(4): 881-898. doi:https://doi.org/10.1093/jxb/erl142

    Article  CAS  Google Scholar 

  • Özyavuz M (2013) Inventory and Analysis of the Landscape. In: Özyavuz M (ed.) Advances in Landscape Architecture https://www.intechopen.com/chapters/45406

    Google Scholar 

  • Patel P.P., Mondal S., Prasad R. (2020) Modifications of the Geomorphic Diversity by Anthropogenic Interventions in the Silabati River Basin. In: Das B.C., Ghosh S., Islam A., Roy S. (eds.) Anthropogeomorphology of Bhagirathi-Hooghly River System in India. Routledge, pp. 331-356.

    Chapter  Google Scholar 

  • Patel, P.P., Mondal, S. (2019) Terrain - Landuse Relation in Garbeta-I Block, Paschim Medinipur District, West Bengal. In: Mukherjee, S. (ed.) Importance and Utilities of GIS, Avenel Press, Burdwan, pp. 82-101

    Google Scholar 

  • Pettorelli N, Safi K, Turner W (2014) Satellite remote sensing, biodiversity research and conservation of the future. Philosophical Transactions of the Royal Society B: Biological Sciences 369(1643): 20130190. doi:https://doi.org/10.1098/rstb.2013.0190

    Article  Google Scholar 

  • Pokhriyal P, Rehman S, Areendran G, Raj K, Pandey R, Kumar M, Sahana M, Sajjad H (2020) Assessing forest cover vulnerability in Uttarakhand, India using analytical hierarchy process. Modeling Earth Systems and Environment 6: 821-831. doi:https://doi.org/10.1007/s40808-019-00710-y

    Article  Google Scholar 

  • Powers RP, Coops NC, Morgan JL, Wulder MA, Nelson TA, Drever CR, Cumming SG (2013) A remote sensing approach to biodiversity assessment and regionalization of the Canadian boreal forest. Prog Phys Geogr 37(1):36–62

    Article  Google Scholar 

  • Qi, J., Huete, A. R., Moran, M. S., Chehbouni, A., & Jackson, R. D. (1993). Interpretation of vegetation indices derived from multi-temporal SPOT images. Remote Sensing of Environment, 44(1), 89-101.

    Article  Google Scholar 

  • Qiu, H. Z., Zhang, H. Y., &Jin, H. (2004). Fusion algorithm of correlated local estimates. Aerospace science and technology, 8(7), 619-626.

    Article  Google Scholar 

  • Reddy, C. S., Shilpa, B., Sudha, K., Sudhakar, S., & Raju, V. S. (2008). Vegetation cover mapping and landscape level disturbance gradient analysis in Warangal district, Andhra Pradesh, India using satellite remote sensing and GIS. Space Research Journal, 1, 29-38.

    Article  Google Scholar 

  • Riitters K, Wickham J, Wade T (2009a) Evaluating anthropogenic risk of grassland and forest habitat degradation using land-cover data. Landsc Online 13:1–14

    Article  Google Scholar 

  • Riitters, K., Wickham, J. D., & Wade, T. G. (2009b). Evaluating anthropogenic risk of grassland and forest habitat degradation using land-cover data. Landscape Online, 13, 1-14.

    Article  Google Scholar 

  • Romshoo SA, Shimada MT, Igarshi T (2002b) SAR sensitivity for vegetation biomass and co system dynamics from tropical forests of Southeast Asia. Asian J Geoinformatics 3:3–17

    Google Scholar 

  • Romshoo, S. A., Koike, M., Onaka, S., Oki, T., & Musiake, K. (2002a). Influence of surface and vegetation characteristics on C-band radar measurements for soil moisture content. Journal of the Indian Society of Remote Sensing, 30(4), 229-244.

    Article  Google Scholar 

  • Rosso PH, Ustin SL, Hastings A (2005) Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data. Int J Remote Sens 26:5169–5191

    Article  Google Scholar 

  • Rounsevell, M. D. A., Reginster, I., Araújo, M. B., Carter, T. R., Dendoncker, N., Ewert, F., House, J.I., Kankaanpää,S., Leemans, R., Metzger, M.J., Schmit, C., Smith, P., & Tuck, G. (2006). A coherent set of future land use change scenarios for Europe. Agriculture, Ecosystems & Environment, 114(1), 57-68.

    Google Scholar 

  • Roy, P. S., &Tomar, S. (2000). Biodiversity characterization at landscape level using geospatial modelling technique. Biological conservation, 95(1), 95-109.

    Article  Google Scholar 

  • Roy, P. S., Behera, M. D., Murthy, M. S. R., Roy, A., Singh, S. et al. (2015a) New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation 39:142–159. doi:https://doi.org/10.1016/j.jag.2015.03.003

    Article  Google Scholar 

  • Roy, P. S., Kushwaha, S. P. S., Murthy, M. S. R., Roy, A., Porwal, M. C. et al. (2012) Biodiversity Characterization at Landscape Level: National Assessment. Indian Institute of Remote Sensing, ISRO, Dehradun, India, ISBN: 81-901418-8-0.

    Google Scholar 

  • Roy, P. S., Ranganath, B. K., Diwakar, P. G., Vohra, T. P. S., Bhan, S. K., Singh, I. J., & Pandian, V. C. (1991). Tropical forest typo mapping and monitoring using remote sensing. Remote Sensing, 12(11), 2205-2225.

    Article  Google Scholar 

  • Roy, P. S., Roy, A., Joshi, P. K., Kale, M. P., Srivastava, V. K., Srivastava, S. K. et al. 2015b. Development of Decadal (1985–1995–2005) Land Use and Land Cover Database for India. Remote Sens. 7, 2401-2430. doi:https://doi.org/10.3390/rs70302401

    Article  Google Scholar 

  • Saha D., Das D., Dasgupta R., Patel P.P. (2020) Application of ecological and aesthetic parameters for riparian quality assessment of a small tropical river in eastern India. Ecological Indicators 117: 106627. doi:https://doi.org/10.1016/j.ecolind.2020.106627

    Article  Google Scholar 

  • Sahana M, Ahmed R, Jain P, Sajjad H (2016) Driving force for forest fragmentation explored by land use change in Song watershed, India. Spatial Information Research 24: 659-669. doi:https://doi.org/10.1007/s41324-016-0062-6

    Article  Google Scholar 

  • Sahana M, Ganaie TA (2017) GIS-based landscape vulnerability assessment to forest fire susceptibility of Rudraprayag district, Uttarakhand, India. Environmental Earth Sciences 76: 676. doi:https://doi.org/10.1007/s12665-017-7008-8

    Article  Google Scholar 

  • Sahana M, Hong H, Sajjad H, Liu J, Zhu A-X (2018) Assessing deforestation susceptibility to forest ecosystem in Rudraprayag district, India using fragmentation approach and frequency ratio model. Science of The Total Environment 627: 1264-1275. doi:https://doi.org/10.1016/j.scitotenv.2018.01.290

    Article  CAS  Google Scholar 

  • Sahana M, Sajjad H, Ahmed R (2015) Assessing spatio-temporal health of forest cover using forest canopy density model and forest fragmentation approach in Sundarban reserve forest, India. Modeling Earth Systems and Environment 1: 49. doi:https://doi.org/10.1007/s40808-015-0043-0

    Article  Google Scholar 

  • Sahana M., Rihan Md., Deb S., Patel P.P., Ahmad W.S., Imdad K. (2020) Detecting the Facets of Anthropogenic Interventions on the Palaeochannels of Saraswati and Jamuna. In: Das B.C., Ghosh S., Islam A., Roy S. (eds.) Anthropogeomorphology of Bhagirathi-Hooghly River System in India. Routledge, pp. 469-490.

    Chapter  Google Scholar 

  • Sajjad, H., Kumar, P., Masroor, M., Rahaman, M. H., Rehman, S., Ahmed, R., & Sahana, M. (2022). Forest Vulnerability to Climate Change: A Review for Future Research Framework. Forests, 13(6), 917.

    Google Scholar 

  • Sarkar, A., Patel, P.P. (2016) Land Use - Terrain Correlations in the Piedmont Tract of Eastern India: A Case Study of the Dulung River Basin. In: A. Santra & S. Mitra (eds.) Handbook of Research on Remote Sensing Applications in Earth and Environmental Studies, IGI Global, USA, pp 147-193 doi:https://doi.org/10.4018/978-1-5225-1814-3.ch008

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological Consequences of Ecosystem Fragmentation: A Review. Conservation Biology 5(1): 18-32. https://doi.org/https://doi.org/10.1111/j.1523-1739.1991.tb00384.x

  • Stork, N. E., Boyle, T. J. B., Dale, V., Eeley, H., Finegan, B., Lawes, M., ... & Soberon, J. (1997). Criteria and indicators for assessing the sustainability of forest management: conservation of biodiversity. Center for International Forestry Research. Working Paper, (17).

    Google Scholar 

  • Sudhakar Reddy C (2017) Applications of GIS in plant taxonomy, species distribution and ecology. Journal of Economic and Taxonomic Botany 41(3-4): 95-106.

    Google Scholar 

  • Tolentino M, Anciaes M (2020) Effects of forest fragmentation on the lekking behavior of White-throated Manakins in Central Amazonia. Journal of Field Ornithology 91(1): 31-43. doi:https://doi.org/10.1111/jofo.12327

    Article  Google Scholar 

  • Townshend, J., Justice, C., Li, W., Gurney, C., & McManus, J. (1991). Global land cover classification by remote sensing: present capabilities and future possibilities. Remote Sensing of Environment, 35(2-3), 243-255.

    Google Scholar 

  • Tremblay MA, St. Clair CC (2009) Factors affecting the permeability of transportation and riparian corridors to the movements of songbirds in an urban landscape. Journal of Applied Ecology 46(6): 1314-1322. doi:https://doi.org/10.1111/j.1365-2664.2009.01717.x

    Article  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Uniyal, S. K., Awasthi, A., & Rawat, G. S. (2002a). Current status and distribution of commercially exploited medicinal and aromatic plants in upper Gori valley, Kumaon Himalaya, Uttaranchal. Current Science, 1246-1252.

    Google Scholar 

  • Uniyal, S. K., Awasthi, A., & Rawat, G. S. (2002b). Mapping fragile mountain watersheds using topography with remote sensing. Tropical ecology, 43(1), 203-212.

    Google Scholar 

  • Varshney, P. K., & Arora, M. K. (2004). Advanced image processing techniques for remotely sensed hyperspectral data. Springer Science & Business Media.

    Book  Google Scholar 

  • Vasilakos C, Kavroudakis D, Georganta A (2020) Machine Learning Classification Ensemble of Multitemporal Sentinel-2 Images: The Case of a Mixed Mediterranean Ecosystem. Remote Sensing 12(12):1-25.

    Article  Google Scholar 

  • Wang T, Alex Thomasson J, Isakeit T, Yang C, Nichols RL (2020) A Plant-by-Plant Method to Identify and Treat Cotton Root Rot Based on UAV Remote Sensing. Remote Sensing 12(15): 2453. doi:https://doi.org/10.3390/rs12152453

  • Wasige JE, Groen TA, Smaling E, Jetten V (2013) Monitoring basin-scale land cover changes in Kagera Basin of Lake Victoria using ancillary data and remote sensing. Int J Appl Earth Obs Geoinf 21:32–42

    Google Scholar 

  • Wegmann M, Leutner B, Dech S (2016) Remote Sensing and GIS for Ecologists: Using Open Source Software. Pelagic Publishing, UK.

    Google Scholar 

  • Xiao, J., & Moody, A. (2004). Trends in vegetation activity and their climatic correlates: China 1982 to 1998. International Journal of Remote Sensing, 25(24), 5669-5689.

    Article  Google Scholar 

  • Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005b). Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote sensing of Environment, 98(2-3), 317-328.

    Article  Google Scholar 

  • Yuan, Z. Y., Li, L. H., Han, X. G., Huang, J. H., Jiang, G. M., Wan, S. Q., ... & Chen, Q. S. (2005a). Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. Journal of Arid Environments, 63(1), 191-202.

    Article  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475.

    Article  Google Scholar 

  • Zhu, L., &Tateishi, R. (2006). Fusion of multisensor multitemporal satellite data for land cover mapping. International Journal of Remote Sensing, 27(05), 903-918.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deb, S. et al. (2022). Approaches and Methodologies on Mapping Vegetation Cover and Biodiversity Status Using Remote Sensing and Spatial Analysis: A Systematic Review. In: Sahana, M., Areendran, G., Raj, K. (eds) Conservation, Management and Monitoring of Forest Resources in India. Springer, Cham. https://doi.org/10.1007/978-3-030-98233-1_15

Download citation

Publish with us

Policies and ethics