Skip to main content

Recent Developments in Membrane Filtration for Wastewater Treatment

  • Chapter
  • First Online:
Industrial Wastewater Treatment

Part of the book series: Water Science and Technology Library ((WSTL,volume 106))

Abstract

Freshwater resources are limited and are becoming increasingly polluted due to the rapid urbanization and industrialization. Water pollution is a preeminent pervasive problem affecting the lives of more than 785 millions people globally, both in terms of quality as well as scarcity. Due to boom in industrialization, several toxins and chemicals such as inorganic particles, harmful hydrocarbon, organic matter, and heavy metals etc. are discharged into freshwater bodies thereby making it unsuitable for domestic and drinking purposes. Therefore, it is imperative to design and perform wastewater treatment processes for the production of freshwater. Various technologies have been explored for this purpose including electrochemical oxidation, advanced oxidation process, advanced biological treatment employing algae, bacteria and fungi and membrane-based filtration techniques. Among these, membrane technology is the most suitable strategy applied for wastewater treatment and has gained considerable attention due to its exciting features such as high separation performance, smaller footprint area, cost-effectiveness, low energy requirement, convenience in operation and high efficiency. In this chapter, we will initially discuss membrane technologies applied for the treatment of wastewater. Then, we will describe various types of synthetic membranes, membrane processes and membrane modules being used in wastewater purification. Afterward, an insight into the membrane operation that includes membrane performance, membrane selectivity, separation mechanism, concentration polarization and membrane fouling will be discussed. Finally, different membrane cleaning processes such as physical, chemical, biological and physicochemical cleaning methods will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Salam MH (2003) Membrane techniques | applications of reverse osmosis. In: Caballero B (ed) Encyclopedia of Food Sciences and Nutrition (Second Edition). Academic Press, Oxford, pp 3833–3837

    Chapter  Google Scholar 

  • Aliyu UM, Rathilal S, Isa YM (2018) Membrane desalination technologies in water treatment: a review. Water Pract Technol 13(4):738–752

    Article  Google Scholar 

  • Amy G (2008) Fundamental understanding of organic matter fouling of membranes. Desalination 231(1–3):44–51

    Article  CAS  Google Scholar 

  • An Y, Wu B, Wong FS, Yang F (2010) Post-treatment of upflow anaerobic sludge blanket effluent by combining the membrane filtration process: fouling control by intermittent permeation and air sparging. Water Environ J 24(1):32–38

    Article  CAS  Google Scholar 

  • Ang WL, Mohammad AW (2015) 12—Mathematical modeling of membrane operations for water treatment. In: Basile A, Cassano A, Rastogi NK (eds) Advances in Membrane Technologies for Water Treatment. Woodhead Publishing, Oxford, pp 379–407

    Chapter  Google Scholar 

  • Baker RW (2000) Membrane separation. In: Wilson ID (ed) Encyclopedia of Separation Science. Academic Press, Oxford, pp 189–210

    Chapter  Google Scholar 

  • Baker RW (2012) Membrane technology and applications. Wiley

    Google Scholar 

  • Bartels CR, Wilf M, Andes K, Iong J (2005) Design considerations for wastewater treatment by reverse osmosis. Water Sci Technol 51(6–7):473–482

    Article  CAS  PubMed  Google Scholar 

  • Basile A, Figoli A, Khayet M (2015) Pervaporation, vapour permeation and membrane distillation: principles and applications. Elsevier

    Google Scholar 

  • Bruggen Van der B, Isotherm F (2015) In Encyclopedia of membranes. Drioli E, Giorno L (eds) Springer, Berlin, Heidelberg

    Google Scholar 

  • Belessiotis V, Kalogirou S, Delyannis E (2016) Chapter four—membrane distillation, in thermal solar desalination, Belessiotis V, Kalogirou S, Delyannis E (eds), Academic Press, pp 191–251

    Google Scholar 

  • Berk Z (2009) Chapter 10—Membrane processes. In: Berk Z (ed) Food Process Engineering and Technology. Academic Press, San Diego, pp 233–257

    Chapter  Google Scholar 

  • Burn S, Gray S (2016) Efficient desalination by reverse osmosis: a guide to RO practice. IWA publishing London, UK

    Google Scholar 

  • Chao Y-M, Liang T (2008) A feasibility study of industrial wastewater recovery using electrodialysis reversal. Desalination 221(1–3):433–439

    Article  CAS  Google Scholar 

  • Chollom MN (2014) Treatment and reuse of reactive dye effluent from textile industry using membrane technology

    Google Scholar 

  • Cui Z, Jiang Y, Field R (2010a) Fundamentals of pressure-driven membrane separation processes. Membrane technology. Elsevier, pp 1–18

    Google Scholar 

  • Cui ZF, Jiang Y, Field RW (2010b) Chapter 1—fundamentals of pressure-driven membrane separation processes. In: Cui ZF, Muralidhara HS (eds) Membrane Technology. Butterworth-Heinemann, Oxford, pp 1–18

    Google Scholar 

  • Curcio E, Drioli E (2005) Membrane distillation and related operations—a review. Sep Purif Rev 34(1):35–86. https://doi.org/10.1081/SPM-200054951

    Article  CAS  Google Scholar 

  • Dehghani MH, Omrani GA, Karri RR (2021) Solid waste—sources, toxicity, and their consequences to human health. Soft Computing Techniques in Solid Waste and Wastewater Management. Elsevier, pp 205–213

    Chapter  Google Scholar 

  • Fane AG, Wang R, Hu MX (2015) Synthetic membranes for water purification: status and future. Angew Chem Int Ed 54(11):3368–3386

    Article  CAS  Google Scholar 

  • Gongping L, Dan H, Wang W, Xiangli F, Wanqin J (2011) Pervaporation separation of butanol-water mixtures using polydimethylsiloxane/ceramic composite membrane. Chin J Chem Eng 19(1):40–44

    Article  Google Scholar 

  • Hansen FA, Santigosa-Murillo E, Ramos-Payán M, Muñoz M, Øiestad EL, Pedersen-Bjergaard SJACA (2021) Electromembrane extraction using deep eutectic solvents as the liquid membrane 1143:109–116

    Google Scholar 

  • Haupt A, Lerch A (2018) Forward osmosis application in manufacturing industries: a short review. Membranes 8(3):47

    Article  CAS  PubMed Central  Google Scholar 

  • Huang J, Meagher M (2001) Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes. J Membr Sci 192(1–2):231–242

    Article  CAS  Google Scholar 

  • Ilahi H, Adnan M, ur Rehman F, Hidayat K, Amin I, Ullah A, Subhan G, Hussain I, Rehman MU, Ullah AJIJPAB (2021) Waste water application: an alternative way to reduce water scarcity problem in vegetables: a review 9(1):240–248

    Google Scholar 

  • Issakhov A, Alimbek A, Zhandaulet YJJOCP (2021) The assessment of water pollution by chemical reaction products from the activities of industrial facilities: numerical study 282:125239

    Google Scholar 

  • Jagannadh SN, Muralidhara H (1996) Electrokinetics methods to control membrane fouling. Ind Eng Chem Res 35(4):1133–1140

    Article  CAS  Google Scholar 

  • Jhaveri JH, Murthy Z (2016) A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379:137–154

    Article  CAS  Google Scholar 

  • Joo SH, Tansel B (2015) Novel technologies for reverse osmosis concentrate treatment: a review. J Environ Manage 150:322–335

    Article  CAS  PubMed  Google Scholar 

  • Jua LY, Karri RR, Mubarak NM, Yon LS, Bing CH, Khalid M, Jagadish P, Abdullah EC (2020) Modeling of methylene blue adsorption using functionalized Buckypaper/Polyvinyl alcohol membrane via ant colony optimization. Environ Pollut, 259. https://doi.org/10.1016/j.envpol.2020.113940

  • Judd S (2008) The status of membrane bioreactor technology. Trends Biotechnol 26(2):109–116. https://doi.org/10.1016/j.tibtech.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  • Jun LY, Karri RR, Yon LS, Mubarak NM, Bing CH, Mohammad K, Jagadish P, Abdullah EC (2020) Modeling and optimization by particle swarm embedded neural network for adsorption of methylene blue by jicama peroxidase immobilized on buckypaper/polyvinyl alcohol membrane. Environ Res, 183. https://doi.org/10.1016/j.envres.2020.109158

  • Karri RR, Ravindran G, Dehghani MH (2021) Wastewater—sources, toxicity, and their consequences to human health. Soft Computing Techniques in Solid Waste and Wastewater Management. Elsevier, pp 3–33

    Chapter  Google Scholar 

  • Kesting RE, Fritzsche A (1993) Polymeric gas separation membranes. Wiley-Interscience

    Google Scholar 

  • Khan FSA, Mubarak NM, Khalid M, Tan YH, Abdullah EC, Rahman ME, Karri RR (2021a) A comprehensive review on micropollutants removal using carbon nanotubes-based adsorbents and membranes. J Environ Chem Eng 9(6). https://doi.org/10.1016/j.jece.2021a.106647

  • Khan FSA, Mubarak NM, Khalid M, Khan MM, Tan YH, Walvekar R, Abdullah EC, Karri RR, Rahman ME (2021b) Comprehensive review on carbon nanotubes embedded in different metal and polymer matrix: fabrications and applications. Critical Rev Solid State Mater Sci. https://doi.org/10.1080/10408436.2021b.1935713

  • Kucera J (2015) Reverse osmosis: industrial processes and applications. Wiley

    Google Scholar 

  • Kumar A, Thakur A, Panesar PS (2019) A review on emulsion liquid membrane (ELM) for the treatment of various industrial effluent streams. Rev Environ Sci Bio/Technology 18(1):153–182

    Article  Google Scholar 

  • Kyllönen H, Pirkonen P, Nyström M (2005) Membrane filtration enhanced by ultrasound: a review. Desalination 181(1–3):319–335

    Article  CAS  Google Scholar 

  • Lau YJ, Karri RR, Mubarak NM, Lau SY, Chua HB, Khalid M, Jagadish P, Abdullah EC (2020) Removal of dye using peroxidase-immobilized Buckypaper/polyvinyl alcohol membrane in a multi-stage filtration column via RSM and ANFIS. Environ Sci Pollut Res 27(32):40121–40134. https://doi.org/10.1007/s11356-020-10045-2

    Article  CAS  Google Scholar 

  • Lin JC-T, Lee D-J, Huang C (2010) Membrane fouling mitigation: membrane cleaning. Sep Sci Technol 45(7):858–872

    Article  CAS  Google Scholar 

  • Liu C, Caothien S, Hayes J, Caothuy T, Otoyo T, Ogawa T (2001) Membrane chemical cleaning: from art to science. Pall Corporation, Port Washington, NY, p 11050

    Google Scholar 

  • Maartens A, Swart P, Jacobs E (1996) An enzymatic approach to the cleaning of ultrafiltration membranes fouled in abattoir effluent. J Membr Sci 119(1):9–16

    Article  CAS  Google Scholar 

  • Macedonio F, Drioli E (2010) 4.09—membrane systems for seawater and brackish water desalination. In: Drioli E, Giorno L (eds) Comprehensive Membrane science and engineering, Elsevier: Oxford. pp 241–257

    Google Scholar 

  • Mahto A, Aruchamy K, Meena R, Kamali M, Nataraj SK, Aminabhavi TM (2021) Forward osmosis for industrial effluents treatment–sustainability considerations. Separation Purification Technol 254:117568

    Google Scholar 

  • Mallada R, Menéndez M (2008) Inorganic membranes: synthesis, characterization and applications. Elsevier

    Google Scholar 

  • Mallevialle J, Odendaal PE, Wiesner MR (1996) Water treatment membrane processes. Amer Water Works Assoc

    Google Scholar 

  • Maskooki A, Mortazavi SA, Maskooki A (2010) Cleaning of spiralwound ultrafiltration membranes using ultrasound and alkaline solution of EDTA. Desalination 264(1–2):63–69

    Article  CAS  Google Scholar 

  • Matin A, Khan Z, Zaidi S, Boyce M (2011) Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention. Desalination 281:1–16

    Article  CAS  Google Scholar 

  • Mulder M, Mulder J (1996) Basic principles of membrane technology. Springer Science & Business Media

    Google Scholar 

  • Noamani S, Niroomand S, Rastgar M, Sadrzadeh M (2019) Carbon-based polymer nanocomposite membranes for oily wastewater treatment. NPJ Clean Water 2(1):1–14

    Article  CAS  Google Scholar 

  • Nqombolo A, Mpupa A, Moutloali RM, Nomngongo PN (2018) Wastewater treatment using membrane technology. Wastewater Water Qual 29

    Google Scholar 

  • Obotey Ezugbe E, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes 10(5):89

    Article  CAS  PubMed Central  Google Scholar 

  • Ong CS, Al-Anzi B, Lau WJ, Goh PS, Lai GS, Ismail AF, Ong YS (2017) Anti-fouling double-skinned forward osmosis membrane with zwitterionic brush for oily wastewater treatment. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Parhi P (2013) Supported liquid membrane principle and its practices: a short review. J Chem

    Google Scholar 

  • Peters T (2010) Membrane technology for water treatment. Chem Eng Technol 33(8):1233–1240

    Article  CAS  Google Scholar 

  • Purkait MK, Sinha MK, Mondal P, Singh R (2018) Introduction to membranes. Interface science and technology. Elsevier, pp 1–37

    Google Scholar 

  • Qadir D, Mukhtar H, Keong LK (2017) Mixed matrix membranes for water purification applications. Sep Purif Rev 46(1):62–80

    Article  Google Scholar 

  • Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Bakangura E, Xu T (2017) Ion exchange membranes: new developments and applications. J Membr Sci 522:267–291. https://doi.org/10.1016/j.memsci.2016.09.033

    Article  CAS  Google Scholar 

  • Sagle A, Freeman B (2004) Fundamentals of membranes for water treatment. Future Desalination Texas 2(363):137

    Google Scholar 

  • Shirazi S, Lin C-J, Chen D (2010) Inorganic fouling of pressure-driven membrane processes—a critical review. Desalination 250(1):236–248

    Article  CAS  Google Scholar 

  • Singh R (2006) Hybrid membrane systems for water purification: technology, systems design and operations. Elsevier

    Google Scholar 

  • Singh R (2014) Membrane technology and engineering for water purification: application, systems design and operation. Butterworth-Heinemann

    Google Scholar 

  • Singh R, Hankins NP (2016) Introduction to membrane processes for water treatment. Emerg Memb Technol Sustain Water Treatment, 15–52

    Google Scholar 

  • Speth TF, Summers RS, Gusses AM (1998) Nanofiltration foulants from a treated surface water. Environ Sci Technol 32(22):3612–3617

    Article  CAS  ADS  Google Scholar 

  • Stephenson T, Brindle K, Judd S, Jefferson B (2000) Membrane bioreactors for wastewater treatment. IWA Publishing

    Google Scholar 

  • Strathmann H (1986) Synthetic membranes and their preparation. Synthetic Membranes: Science, Engineering and Applications. Springer, pp 1–37

    Google Scholar 

  • Suwaileh WA, Johnson DJ, Sarp S, Hilal N (2018) Advances in forward osmosis membranes: altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalination 436:176–201

    Article  CAS  Google Scholar 

  • Van de Lisdonk C, Van Paassen J, Schippers J (2000) Monitoring scaling in nanofiltration and reverse osmosis membrane systems. Desalination 132(1–3):101–108

    Article  Google Scholar 

  • Wan M-W, Reguyal F, Futalan C, Yang H-L, Kan C-C (2013) Ultrasound irradiation combined with hydraulic cleaning on fouled polyethersulfone and polyvinylidene fluoride membranes. Environ Technol 34(21):2929–2937

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Ma J, Tang CY, Kimura K, Wang Q, Han X (2014) Membrane cleaning in membrane bioreactors: a review. J Membr Sci 468:276–307

    Article  CAS  Google Scholar 

  • Wen G, Ma J, Zhang L, Yu G (2010) 4.07—Membrane Bioreactor in water treatment, in comprehensive membrane science and engineering, Drioli E, Giorno L, (eds ), Elsevier: Oxford. pp 195–209

    Google Scholar 

  • Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1(5):1–15

    Article  CAS  Google Scholar 

  • Williams C, Wakeman R (2000) Membrane fouling and alternative techniques for its alleviation. Membr Technol 2000(124):4–10

    Article  Google Scholar 

  • Xu T (2005) Ion exchange membranes: state of their development and perspective. J Membr Sci 263(1–2):1–29

    Article  CAS  Google Scholar 

  • Yigit N, Civelekoglu G, Harman I, Koseoglu H, Kitis M (2010) Effects of various backwash scenarios on membrane fouling in a membrane bioreactor. Survival and Sustainability. Springer, pp 917–929

    Chapter  Google Scholar 

  • Zhao Y-J, Wu K-F, Wang Z-J, Zhao L, Li S-S (2000) Fouling and cleaning of membrane-a literature review. J Environ Sci Beijing 12(2):241–251

    CAS  Google Scholar 

  • Zirehpour A, Rahimpour A (2016) Membranes for wastewater treatment. Nanostructured polymer membranes. Wiley, London, UK, 2, pp 159–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yaseen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salman, M., Shakir, M., Yaseen, M. (2022). Recent Developments in Membrane Filtration for Wastewater Treatment. In: Karchiyappan, T., Karri, R.R., Dehghani, M.H. (eds) Industrial Wastewater Treatment . Water Science and Technology Library, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-030-98202-7_1

Download citation

Publish with us

Policies and ethics