Skip to main content

Geomatics Assessment of Water Resources in a Transboundary Basin

  • 89 Accesses

Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Usumacinta is a transboundary basin located between Mexico and Guatemala. Human activities in the last decades have impacted this basin. Consequently, it has impacted water resources also. This research was implemented the Driver-Pressure-State-Impact-Response framework (DPSIR), and it has been enriched with the geomatics approach to figure out the main factors that alter water resources and optimize the management strategies. However, this article only talks about Drivers-Pressures-State directly related to water availability. Drivers are the water requirements for urban-public use, agricultural use, industrial use, and other uses. Pressures are changes in surface water bodies and increased agricultural frontier. Finally, indicators of State are water balance and water availability. The analysis results show that even though the Usumacinta River is one of the largest rivers in Mexico and Central America, the municipalities within the basin have a deficit in their local water availability.


  • Transboundary basin
  • Water availability
  • Water balance
  • Consumption of water

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-98096-2_2
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-98096-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  • Babel M, Eiman K (2012) A global analysis of river basins science and transboundary management. UNU-INWEH

    Google Scholar 

  • Bhaduri A, Bogardi J, Siddiqi A, Voigt H, Vorosmarty C, Pahl-Wostl C, Osuna V (2016) Achieving sustainable development goals from a water perspective. Front Environ Sci

    Google Scholar 

  • Caeiro S, Mourão I, Costa MH, Painho M, Ramos TB, Sousa S (2004) Application of the DPSIR model to the Sado Estuary in a GIS context – Social and Economical Pressures. In: 7th AGILE conference on geographic information science” 29 April-1 May 2004, Heraklion, Greece

    Google Scholar 

  • Chen Y, Liu R, Barrett D, Gao L, Zhou M, Renzullo L, Emelyanova I (2015) A spatial assessment framework for evaluating flood risk under extreme climates. Sci Total Environ 15(538):512–523.

    CrossRef  Google Scholar 

  • CONAGUA (2020) Consulta a la base de datos del REPDA. Obtenido de

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Michaelsen J (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Nature 2(150066).

  • Greg S, Abbas R (2017) Sustainable development and geospatial information: a strategic framework for integrating a global policy agenda into national geospatial capabilities. Geo-Spat Inf Sci 20(2):59–76

    CrossRef  Google Scholar 

  • Kristensen P (2004) DPSIR Framework. a comprehensive/detailed assessment of the vulnerability of water resources to environmental change in Africa using river basin approach. Nairobi, Kenya: UNEP Headquarters

    Google Scholar 

  • Lalande N, Cernesson F, Decherf A, Tournoud M-G (2014) Implementing the DPSIR framework to link water quality of rivers to land use: methodological issues and preliminary field test. Int J River Basin Manag 12(3):201–217

    Google Scholar 

  • Lewison R, Rudd M, Al-Hayek W, Baldwin C, Beger M, Lieske S, Hines E (2016) How the DPSIR framework can be used for structuring problems and facilitating empirical research in coastal systems. Environ Sci Policy 110–119

    Google Scholar 

  • López P (27 de Agosto de 2020) Avanza el deterioro de la Cuenca del Usumacinta. Gaceta UNAM

    Google Scholar 

  • Lorenz CM, Gilbert AJ, Vellinga P (2001) Sustainable management of transboundary river basins: a line of reasoning. Regional Environ Change 2:38–53.

  • March-Mifsut I, Castro M (2010) La cuenca del río Usumacinta: Perfil y perspectiva para su conservación y desarrollo sostenble. En H. Cotler, Las Cuencas Hidrográficas de México. Diagnóstico y Priorización. Ciudad de México: SEMARNAT, pp 193–197

    Google Scholar 

  • Mattas C, Voudouris K, Panagopoulos A (2014) Integrated groundwater resources management using the DPSIR approach in a GIS environment: a case study from the Gallikos river basin, North Greece. Water 1043–1068

    Google Scholar 

  • Molina JL, RodrÍguez-Gonzálvez P, Molina MC, González-Agulera D (2014) Geomatic Methods at the service of water resources modelling. J Hydrol 509,150–162. “” \t “_blank”

  • Nguyen T, Ngo H, Guo W, Nguyen HQ, Luu C, Dang KB, Liu Y, Zhang X (2020) New approach of water quantity vulnerability assessment using satellite images and GIS-based model: an application to a case study in Vietnam. Sci Total Environ 237.

  • Oesterwind D, Rau A, Zaiku A (2016) Drivers and pressures e Untangling the terms commonly used in marine science and policy. J Environ Manage 181:8–15

    CrossRef  Google Scholar 

  • Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA (2014) Good practices for estimating area and assessing accuracy of land change. Remote Sens Environ 148:42–57.

    CrossRef  Google Scholar 

  • Patricio J, Elliot M, Masik K, Papadopoulou K, Smith C (2016) DPSIR—two decades of trying to develop a unifying framework for marine environmental management? Front Mar Sci 3.

  • Pekel JF, Cottam A, Gorelick N et al (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540:418–422.

    CrossRef  Google Scholar 

  • Pontius Jr RG, Millones M (2011) Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32(15):4407–4429.

  • SIAP (2015) Conjunto de datos vectoriales de la frontera agrícola de Mexico, Serie II. Ciudad de México. Obtenido de.

  • SIAP (21 de 06 de 2017) Conjunto de datos vectoriales de la frontera agrícola de Mexico, Serie III. Ciudad de México

    Google Scholar 

  • SIAP (30 de 11 de 2012) Conjunto de datos vectoriales de la frontera agrícola de Mexico, Serie I. Ciudad de México

    Google Scholar 

  • Skoulikaris C, Zafirakou A (2019) River basin management plans as a tool for sustainable transboundary river basins’ management. Environ Sci Pollut Res 26:14835–14848.

    CrossRef  Google Scholar 

  • Tapia-Silva FO (2014) Avances en geomática para la resolución de la problemática del agua en México. Tecnología y Ciencias Del Agua 5(2):131–148

    Google Scholar 

  • Yuan L, He W, Degefu DM, Liao Z, Wu X, An M, Zhang Z, Ramsey TS (2020) Transboundary water sharing problem; a theoretical analysis using evolutionary game and system dynamics. J Hydrol 582.

  • Zhang Y, Kong D, Gan R, Chiew F, McVicar T, Zhang Q, Yang Y (2019) Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens Environ 222:165–182.

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Alvarado-Arriaga, V.Y., Tapia-Silva, F.O., Sosa-Rodríguez, F.S. (2022). Geomatics Assessment of Water Resources in a Transboundary Basin. In: Tapia-McClung, R., Sánchez-Siordia, O., González-Zuccolotto, K., Carlos-Martínez, H. (eds) Advances in Geospatial Data Science. iGISc 2021. Lecture Notes in Geoinformation and Cartography. Springer, Cham.

Download citation