Skip to main content

Assessment of the Reduction of the Icesnow Coverage at the TransMexican Volcanic Belt Through Empirical Mode Decomposition on Satellite Imagery

  • Conference paper
  • First Online:
Advances in Geospatial Data Science (iGISc 2021)

Abstract

The drastic decrease in snow and ice cover on the main peaks of the Trans-Mexican Volcanic Belt has been observed by both the civilian population and scientists. This decrease has occurred particularly in the once considered permanent glaciers on such peaks. Here, Landsat images are used to evaluate the change in snow and ice cover on the three main peaks of the Trans-Mexican Volcanic Belt: Iztaccíhuatl (5,230 m.a.s.l.), Popocatépelt (5,426 m.a.s.l.) and Citlaltépetl (5,636 m.a.s.l). Through image segmentation techniques, we obtain a time series of snow and ice cover for each volcano. Subsequently, temporal tendencies were obtained through the empirical mode decomposition technique. For the study period between 1985 and 2020, the analysis show a clear decreasing trend in the area covered by snow and ice (an average reduction of 27.74% for Iztaccíhuatl and Citlaltépetl). This is particularly intense for Popocatépetl volcano (99.93 % from 1985 to 2020). The behaviour of the snow and ice cover time series seems to be attributed to some periodicities in the solar cycle, as well as the eruptive activity of Popocatépetl volcano since 1999; another potential cause could be the impact of global warming in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida L, Cleef A, Herrera A, Velázquez A, Luna I (1994) El zacatonal alpino del Volcán Popocatépetl, México, y su posición en las montañas tropicales de América. Phytocoenologia 22(3):391–436

    Article  Google Scholar 

  • Almeida-Lenero L, Giménez de Azcárate J, Cleef A, Gonzales Trapaga A (2004) Las comunidades vegetales del zacatonal alpino de los Volcanes Popocatépetl y Nevado de Toluca. Región Central de México. Phytocoenologia 34(1):91–132

    Google Scholar 

  • Al-Najjar HA, Kalantar B, Pradhan B, Saeidi V (2019) Conditioning factor determination for mapping and prediction of landslide susceptibility using machine learning algorithms. In: Earth resources and environmental remote sensing/GIS applications X, International Society for Optics and Photonics, vol 11156, p 111560K

    Google Scholar 

  • Ames A, Hastenrath S (1996) Diagnosing the imbalance of Glaciar Santa Rosa, Cordillera Raura, Peru. J Glaciol 42(141):212–218

    Article  Google Scholar 

  • Andrade AO, Nasuto S, Kyberd P, Sweeney-Reed CM, Van Kanijn F (2006) EMG signal filtering based on empirical mode decomposition. Biomed Signal Process Control 1(1):44–55

    Article  Google Scholar 

  • Andrés N, Estremera DP, Zamorano JJ, Vázquez-Selem L (2010) Distribución del permafrost e intensidad de los procesos periglaciares en el estratovolcán Iztaccíhuatl (México) 1. Eria 83:291–310

    Google Scholar 

  • Barth AM, Marcott SA, Licciardi JM, Shakun JD (2019) Deglacial thinning of the laurentide ice sheet in the adirondack mountains, New York, USA, revealed by 36cl exposure dating. Paleoceanogr Paleoclimatology 34(6):946–953. https://doi.org/10.1029/2018PA003477

  • Beaman JH (1962) The timberlines of Iztaccihuatl and Popocatepetl, Mexico. Ecology 43(3):377–385

    Article  Google Scholar 

  • Burroughs W (2005) Cycles and periodicities. In: Encyclopedia of world climatology, pp 173–177

    Google Scholar 

  • Cong J, Gao C, Han D, Li Y, Wang G (2020) Stability of the permafrost peatlands carbon pool under climate change and wildfires during the last 150 years in the northern great Khingan mountains, china. Sci Total Environ 712. https://doi.org/10.1016/j.scitotenv.2019.136476

  • Cortés-Ramos J, Delgado-Granados H (2015) Reconstruction of glacier area on Citlaltépetl volcano, 1958 and implications for Mexico’s deglaciation rates. Geofísica Int 54(2):111–125

    Article  Google Scholar 

  • De la Cruz-Reyna S, Siebe C (1997) The giant Popocatépetl stirs. Nature 388(6639):227–227

    Article  Google Scholar 

  • Delgado-Granados H (1996) Los glaciales del Popocatépetl: huéspedes efímeros de la montaña? Ciencias 041

    Google Scholar 

  • Dikshit A, Pradhan B, Alamri AM (2020) Pathways and challenges of the application of artificial intelligence to geohazards modelling. Gondwana Research

    Google Scholar 

  • Drakakis K (2008) Empirical mode decomposition of financial data. Int Math Forum 4:1191–1202

    MathSciNet  MATH  Google Scholar 

  • Ferrari L, Orozco-Esquivel T, Manea V, Manea M (2012) The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522:122–149

    Article  Google Scholar 

  • Gajek W, Trojanowski J, Malinowski M (2017) Automating long-term glacier dynamics monitoring using single-station seismological observations and fuzzy logic classification: a case study from Spitsbergen. J Glaciol 63(240):581–592

    Article  Google Scholar 

  • Ghil M, Vautard R (1991) Interdecadal oscillations and the warming trend in global temperature time series. Nature 350(6316):324–327

    Article  Google Scholar 

  • Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Pearson Education International

    Google Scholar 

  • Heine K (1975) Permafrost am Pico de Orizaba/Mexiko. E&G Quat Sci J 26(1):212–217

    Article  Google Scholar 

  • Heine K (1994) Present and past geocryogenic processes in Mexico. Permafr Periglac Process 5(1):1–12

    Article  Google Scholar 

  • Hernandez-Capistran J, Martinez-Carballido J (2016) Thresholding methods review for microcalcifications segmentation on mammography images in obvious, subtle, and cluster categories. In: 2016 13th international conference on electrical engineering, computing science and automatic control, CCE 2016. https://doi.org/10.1109/ICEEE.2016.7751192

  • Hk Du, Jx Cao, Yj Xue, Xj Wang (2015) Seismic facies analysis based on self-organizing map and empirical mode decomposition. J Appl Geophys 112:52–61

    Article  Google Scholar 

  • Houssein E, El-din Helmy B, Oliva D, Elngar A, Shaban H (2021) Multi-level thresholding image segmentation based on nature-inspired optimization algorithms: a comprehensive review. Stud Comput Intell 967:239–265. https://doi.org/10.1007/978-3-030-70542-8_11

  • Huang NE (2001) Review of empirical mode decomposition. Wavelet Appl VIII Int Soc Opt Photonics 4391:71–81

    MathSciNet  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc R Soc Lond A: Math Phys Eng Sci 454(1971):903–995

    Article  MathSciNet  Google Scholar 

  • Johnson C, Harrison C (1990) Neotectonics in central Mexico. Phys Earth Planet Inter 64(2–4):187–210

    Article  Google Scholar 

  • Kane R (2005) Short-term periodicities in solar indices. Solar Phys 227(1):155–175

    Article  Google Scholar 

  • Keller G (2008) Cretaceous climate, volcanism, impacts, and biotic effects. Cretac Res 29(5–6):754–771

    Article  Google Scholar 

  • Kim D, Oh HS (2009) EMD: a package for empirical mode decomposition and Hilbert spectrum. R J 1(1):40–46

    Article  Google Scholar 

  • Liu L, Cheng Y, Wang X (2017) Genetic algorithm optimized Taylor Kriging surrogate model for system reliability analysis of soil slopes. Landslides 14(2):535–546

    Article  Google Scholar 

  • Liu G, Zhao L, Li R, Wu T, Jiao K, Ping C (2017a) Permafrost warming in the context of step-wise climate change in the Tien Shan mountains, china. Permafr Periglac Process 28(1):130–139. https://doi.org/10.1002/ppp.1885

  • Lorenzo JL (1959) Los glaciares de México. Instituto de Geofísica, Universidad Nacional Autónoma de México, Technical report

    Google Scholar 

  • Lugo-Hubp J, Robles-Padilla J, Eternod-Aguilar A, Ortuño-Ramírez V (1981) La disección del relieve en la porción centro oriental del Sistema Volcánico Transversal. Investigaciones geográficas 11:7–19

    Google Scholar 

  • Macías JL (2007) Geology and eruptive history of some active volcanoes of México. Spec Papers Geoll Soc Am 422:183

    Google Scholar 

  • Macías J, Arce J, García-Tenorio F, Layer P, Rueda H, Reyes-Agustin G, López-Pizaña F, Avellán D (2012) Geology and geochronology of tlaloc, telapón, iztaccíhuatl, and popocatépetl volcanoes, sierra nevada, central mexico. GSA Field Guides 25:163–193. https://doi.org/10.1130/2012.0025(08)

  • Mardia KV, Hainsworth T (1988) A spatial thresholding method for image segmentation. IEEE Trans Pattern Anal Mach Intell 10(6):919–927

    Article  Google Scholar 

  • Mendo-Pérez G, Arciniega-Ceballos A, Matoza R, Rosado-Fuentes A, Sanderson R, Chouet B (2021) Ground-coupled airwaves template match detection using broadband seismic records of explosive eruptions at Popocatépetl volcano, Mexico. J Volcanol Geotherm Res 419. https://doi.org/10.1016/j.jvolgeores.2021.107378

  • Mojica Moncada D, Cardenas C, Mojica J, Brondi F, Barragán Barrera D, Marangunic C, Holland D, Franco Herrera A, Casassa G (2020) The Lange Glacier and its impact due to temperature increase in the Admiralty Bay, King George Island, Antarctic Peninsula during the Austral Summer 2018–2019. AGU Fall Meet Abstr 2020:C062-0004

    Google Scholar 

  • Moreno JL, Navarro F, Izaguirre E, Alonso E, Zabalza J, Revuelto J et al (2020) Glacier and climate evolution in the Pariacacá Mountains, Peru. Cuadernos de Investigación Geográfica 46(1):127–139

    Article  Google Scholar 

  • Nguvava M, Abiodun B, Otieno F (2019) Projecting drought characteristics over East African basins at specific global warming levels. Atmos Res 228:41–54. https://doi.org/10.1016/j.atmosres.2019.05.008

  • Nixon GT (1989) The geology of Iztaccíhuatl volcano and adjacent areas of the Sierra Nevada and Valley of Mexico, vol 219. Geological Society of America

    Google Scholar 

  • Nunes JC, Bouaoune Y, Delechelle E, Niang O, Bunel P (2003) Image analysis by bidimensional empirical mode decomposition. Image Vis Comput 21(12):1019–1026

    Article  Google Scholar 

  • Orozco-del-Castillo MG, Hernández-Gómez JJ, Yañez-Casas GA, Moreno-Sabido MR, Couder-Castañeda C, Medina I, Novelo-Cruz R, Enciso-Aguilar MA (2019) Pattern recognition through empirical mode decomposition for temperature time series between 1986 and 2019 in Mexico City downtown for global warming assessment. In: International congress of telematics and computing. Springer, pp 45–60

    Google Scholar 

  • Orozco-del-Castillo MG, Ortiz-Alemán JC, Couder-Castañeda C, Hernández-Gómez JJ, Solís-Santomé A (2017) High solar activity predictions through an artificial neural network. Int J Modern Phys C 28(06):1750075

    Article  Google Scholar 

  • Pare S, Kumar A, Singh G, Bajaj V (2020) Image segmentation using multilevel thresholding: a research review. Iran J Scie Technol Trans Electr Eng 44(1). https://doi.org/10.1007/s40998-019-00251-1

  • Pasquarè G, Vezzoli L, Zanchi A (1987) Morphological and structural model of Mexican Volcanic Belt. Geofísica Int 26(2)

    Google Scholar 

  • Pérez-Moreno L, Rodríguez-Pérez Q, Zúñiga F, Horta-Rangel J, de la Luz Pérez-Rea M, Pérez-Lara M (2021) Site response evaluation in the Trans-Mexican Volcanic Belt based on HVSR from ambient noise and regional seismicity. Appl Sci (Switzerland) 11(13). https://doi.org/10.3390/app11136126

  • Pompeani DP, Bird BW, Wilson JJ, Gilhooly WP, Hillman AL, Finkenbinder MS, Abbott MB (2021) Severe little ice age drought in the midcontinental United States during the Mississippian abandonment of Cahokia. Sci Rep 11(1):1–8

    Article  Google Scholar 

  • Quincey D, Richardson S, Luckman A, Lucas RM, Reynolds J, Hambrey M, Glasser N (2007) Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global Planet Change 56(1–2):137–152

    Article  Google Scholar 

  • Rahman K, Maringanti C, Beniston M, Widmer F, Abbaspour K, Lehmann A (2013) Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: the Upper Rhone River watershed case in Switzerland. Water Resourc Manag 27(2):323–339

    Article  Google Scholar 

  • Rangecroft S, Suggitt A, Anderson K, Harrison S (2016) Future climate warming and changes to mountain permafrost in the Bolivian Andes. Climatic Change 137(1-2):231–243. https://doi.org/10.1007/s10584-016-1655-8

  • Rodríguez-Pérez Q, Monterrubio-Velasco M, Zúñiga F, Valdés-González C, Arámbula-Mendoza R (2021) Spatial and temporal b-value characterization at Popocatépetl volcano, Central Mexico. J Volcanol Geotherm Res 417. https://doi.org/10.1016/j.jvolgeores.2021.107320

  • Rossotti A, Carrasco-Núñez G, Rosi M, Di Muro A (2006) Eruptive dynamics of the “Citlaltépetl Pumice” at Citlaltépetl volcano, Eastern Mexico. J Volcanol Geotherm Res 158(3-4):401–429. https://doi.org/10.1016/j.jvolgeores.2006.07.008

  • Russell S, Dewey D, Tegmark M (2015) Research priorities for robust and beneficial artificial intelligence. AI Mag 36(4):105–114

    Google Scholar 

  • Siebe C, Macias JL, Abrams M, Rodriguez S, Castro R, Delgado H (1995) Quaternary explosive volcanism and pyroclastic deposits in east central mexico: implications for future hazards. In: Guidebook of geological excursions: in conjunction with the annual meeting of the geological society of America, New Orleans, Louisiana, November 6–9, 1995, pp 1–48

    Google Scholar 

  • Song C, Sheng Y, Wang J, Ke L, Madson A, Nie Y (2017) Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. Geomorphology 280:30–38. https://doi.org/10.1016/j.geomorph.2016.12.002

  • Soto-Molina VH, Delgado-Granados H (2020) Distribution and current status of permafrost in the highest volcano in North America: Citlaltepetl (Pico de Orizaba), Mexico. Geofísica Int 59(1):39–53. https://doi.org/10.22201/igeof.00167169p.2020.59.1.2079

  • Soto-Molina VH, Delgado-Granados H, Ontiveros-González G (2019) Estimación de la temperatura basal del “Glaciar Norte” del volcán Citlaltépetl, México. Modelo para determinar la presencia de permafrost subglaciar. Estudios Geográficos 80(287):e019–e019

    Google Scholar 

  • Suarez-Gallareta E, Hernández-Gómez JJ, Cetzal-Balam G, Orozco-del-Castillo M, Moreno-Sabido M, Silva-Aguilera RA (2018) Sistema híbrido basado en redes neuronales artificiales y descomposición modal empírica para la evaluación de la interrelación entre la irradiancia solar total y el calentamiento global. Res Comput Sci 147(5):319–332

    Article  Google Scholar 

  • Terzi S, Torresan S, Schneiderbauer S, Critto A, Zebisch M, Marcomini A (2019) Multi-risk assessment in mountain regions: a review of modelling approaches for climate change adaptation. J Environ Manag 232:759–771

    Article  Google Scholar 

  • United States Geological Service (2021) Earthexplorer - home. https://earthexplorer.usgs.gov/. Accessed 23 Aug 2021

  • Veettil B, Wang S (2018) An update on recent glacier changes in Mexico using Sentinel-2A data. Geografiska Ann Ser A: Phys Geogr 100(3):307–318. https://doi.org/10.1080/04353676.2018.1478672

  • Velez ML, Euillades P, Caselli A, Blanco M, Díaz JM (2011) Deformation of Copahue volcano: inversion of InSAR data using a genetic algorithm. J Volcanol Geotherm Res 202(1–2):117–126

    Article  Google Scholar 

  • Villalpando O, Ik O (1968) Algunos aspectos ecológicos del volcán Nevado de Toluca. Master’s thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México

    Google Scholar 

  • Wang H, Li Y, Liu Y, Huang G, Li Y, Jia Q (2021) Analyzing streamflow variation in the data-sparse mountainous regions: An integrated CCA-RF-FA framework. J Hydrol 596:126056

    Google Scholar 

  • White SE (2002) Glaciers of México. In: Ferrigno J, Williams R (ed) (2002) Satellite image atlas of glaciers of the world, US Geological Survey, pp 383–405

    Google Scholar 

  • White SE (1981) Neoglacial to recent glacier fluctuations on the volcano Popocatépetl, Mexico. J Glaciol 27(96):359–363

    Article  Google Scholar 

  • Yadollahie M (2019) The flood in Iran: a consequence of the global warming? Int J Occup Environ Med 10(2):54–56. https://doi.org/10.15171/ijoem.2019.1681

  • Yokohata T, Iwahana G, Sone T, Saito K, Ishizaki N, Kubo T, Oguma H, Uchida M (2021) Projections of surface air temperature required to sustain permafrost and importance of adaptation to climate change in the Daisetsu mountains, Japan. Sci Rep 11(1). https://doi.org/10.1038/s41598-021-94222-4

  • Zhang J, Li X, Yang R, Liu Q, Zhao L, Dou B (2017) An extended kriging method to interpolate near-surface soil moisture data measured by wireless sensor networks. Sensors 17(6):1390

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank G.E. Casillas-Aviña and A.D. Herrera-Ortiz for his support in pre-processing the initial satellite image dataset. This work was partially supported by projects SIP 20210925, 20211789, 20212034 and EDI grant, by Instituto Politécnico Nacional/Secretaría de Investigación y Posgrado, as well as by projects 8285.20-P and 10428.21-P from Tecnológico Nacional de México / IT de Mérida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge J. Hernández-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sánchez-Martínez, A., Ruíz-Oropeza, E.Y., Orozco-del-Castillo, M.G., Hernández-Gómez, J.J., Yáñez-Casas, G.A. (2022). Assessment of the Reduction of the Icesnow Coverage at the TransMexican Volcanic Belt Through Empirical Mode Decomposition on Satellite Imagery. In: Tapia-McClung, R., Sánchez-Siordia, O., González-Zuccolotto, K., Carlos-Martínez, H. (eds) Advances in Geospatial Data Science. iGISc 2021. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-030-98096-2_10

Download citation

Publish with us

Policies and ethics