Skip to main content

Conjugated Polymers as Organic Electrodes for Photovoltaics

  • 384 Accesses

Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The use of conjugated polymers as organic electrodes for photovoltaics is very attractive due to their ability to form flexible substrates which can be applied either as an anode or a cathode depending on its configuration. Its properties can easily be tuned via synthetic or post-synthetic treatment processes. In this chapter, an overview of the brief history is given to provide a background on solar cell technology. The conjugated polymers are commonly observed in the third generation solar cells specifically in dye-sensitized, perovskite, and organic solar cells, which mostly utilize them as counter electrodes. First, we briefly discuss the components, criteria, and representative conjugated polymers for dye-sensitized solar cells. Then followed by the composition, mechanism, and utilization of conjugated polymers in perovskite solar cells. Lastly, we introduce the basic configuration of organic solar cells that uses conjugated polymers as both cathode and anode.

Keywords

  • Third-generation solar cell
  • Dye-sensitized solar cell
  • Perovskite solar cell
  • Organic solar cell
  • Counter-electrode

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-98021-4_8
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-98021-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Becquerel, M.: Mémoire sur les effets électriques produits sous l’influence des rayons solaires. C. R. Hebd Seances Acad. Sci. 9, 561–567 (1839)

    Google Scholar 

  2. Fritts, C.E.: On a new form of selenium cell, and some electrical discoveries made by its use. Am. J. Sci. s3–26 (156), 465–472 (1883)

    Google Scholar 

  3. Chapin, D.M., Fuller, C.S., Pearson, G.L.: A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954)

    CrossRef  CAS  Google Scholar 

  4. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)

    CrossRef  Google Scholar 

  5. O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)

    CrossRef  CAS  Google Scholar 

  6. Li, Q., Wu, J., Tang, Q., Lan, Z., Li, P., Lin, J., Fan, L.: Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochem. Commun. 10(9), 1299–1302 (2008)

    CrossRef  CAS  Google Scholar 

  7. Wang, H., Feng, Q., Gong, F., Li, Y., Zhou, G., Wang, Z.-S.: In situ growth of oriented polyaniline nanowires array for efficient cathode of Co(iii)/Co(ii) mediated dye-sensitized solar cell. J. Mater. Chem. A 1(1), 97–104 (2013)

    CrossRef  Google Scholar 

  8. Li, Z., Ye, B., Hu, X., Ma, X., Zhang, X., Deng, Y.: Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell. Electrochem. Commun. 11(9), 1768–1771 (2009)

    CrossRef  CAS  Google Scholar 

  9. Tai, Q., Chen, B., Guo, F., Xu, S., Hu, H., Sebo, B., Zhao, X.-Z.: In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells. ACS Nano 5(5), 3795–3799 (2011)

    CrossRef  CAS  Google Scholar 

  10. Zhang, J., Hreid, T., Li, X., Guo, W., Wang, L., Shi, X., Su, H., Yuan, Z.: Nanostructured polyaniline counter electrode for dye-sensitised solar cells: fabrication and investigation of its electrochemical formation mechanism. Electrochim. Acta 55(11), 3664–3668 (2010)

    CrossRef  CAS  Google Scholar 

  11. Tang, Q., Cai, H., Yuan, S., Wang, X.: Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. J. Mater. Chem. A 1(2), 317–323 (2013)

    CrossRef  CAS  Google Scholar 

  12. Huang, K.-C., Hu, C.-W., Tseng, C.-Y., Liu, C.-Y., Yeh, M.-H., Wei, H.-Y., Wang, C.-C., Vittal, R., Chu, C.-W., Ho, K.-C.: A counter electrode based on hollow spherical particles of polyaniline for a dye-sensitized solar cell. J. Mater. Chem. 22(29), 14727–14733 (2012)

    CrossRef  CAS  Google Scholar 

  13. Chiang, C.-H., Chen, S.-C., Wu, C.-G.: Preparation of highly concentrated and stable conducting polymer solutions and their application in high-efficiency dye-sensitized solar cell. Org. Electron. 14(9), 2369–2378 (2013)

    CrossRef  CAS  Google Scholar 

  14. Wu, J., Li, Q., Fan, L., Lan, Z., Li, P., Lin, J., Hao, S.: High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. J. Power Sources 181(1), 172–176 (2008)

    CrossRef  CAS  Google Scholar 

  15. Makris, T., Dracopoulos, V., Stergiopoulos, T., Lianos, P.: A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes. Electrochim. Acta 56(5), 2004–2008 (2011)

    CrossRef  CAS  Google Scholar 

  16. Hwang, D.K., Song, D., Jeon, S.S., Han, T.H., Kang, Y.S., Im, S.S.: Ultrathin polypyrrole nanosheets doped with HCl as counter electrodes in dye-sensitized solar cells. J. Mater. Chem. A 2(3), 859–865 (2014)

    CrossRef  CAS  Google Scholar 

  17. Jeon, S.S., Kim, C., Ko, J., Im, S.S.: Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. J. Mater. Chem. 21(22), 8146–8151 (2011)

    CrossRef  CAS  Google Scholar 

  18. Lee, J.H., Jang, Y.J., Kim, D.W., Cheruku, R., Thogiti, S., Ahn, K.-S., Kim, J.H.: Application of polypyrrole/sodium dodecyl sulfate/carbon nanotube counter electrode for solid-state dye-sensitized solar cells and dye-sensitized solar cells. Chem. Pap. 73(11), 2749–2755 (2019)

    CrossRef  CAS  Google Scholar 

  19. Rafique, S., Rashid, I., Sharif, R.: Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode. Sci. Rep. 11(1), 14830 (2021)

    CrossRef  CAS  Google Scholar 

  20. Noorani, B., Ghasemi, S., Hosseini, S.R.: Nanostructured nickel sulfide/graphene oxide-polypyrrole as platinum-free counter electrode for dye-sensitized solar cell. J. Photochem. Photobiol. A 405, 112966 (2021)

    Google Scholar 

  21. Torabi, N., Behjat, A., Jafari, F.: Dye-sensitized solar cells based on porous conjugated polymer counter electrodes. Thin Solid Films 573, 112–116 (2014)

    CrossRef  CAS  Google Scholar 

  22. Yahia, I.S., Mansour, S.A., Hafez, H.S., Ocakoglu, K., Yakuphanoglu, F.: Photovoltaic properties and negative capacitance spectroscopy of PCBM:P3HT/FTO nanostructured counter electrode for TiO2-based DSSC. J. Inorg. Organomet. Polym. Mater. 22(6), 1240–1247 (2012)

    CrossRef  CAS  Google Scholar 

  23. Bora, C., Sarkar, C., Mohan, K.J., Dolui, S.: Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells. Electrochim. Acta 157, 225–231 (2015)

    CrossRef  CAS  Google Scholar 

  24. Asok, A., Naik, A.A., Arunachalam, S., Govindaraj, R., Haribabu, K.: Microwave assisted synthesis of polythiophene–molybdenum sulfide counter electrode in dye sensitized solar cell. J. Mater. Sci.: Mater. Electron. 30(14), 13655–13663 (2019)

    CAS  Google Scholar 

  25. Yasuteru, S., Takayuki, K., Yuji, W., Shozo, Y.: Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chem. Lett. 31(10), 1060–1061 (2002)

    CrossRef  Google Scholar 

  26. Chen, J.-G., Wei, H.-Y., Ho, K.-C.: Using modified poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91(15), 1472–1477 (2007)

    CrossRef  CAS  Google Scholar 

  27. Zhang, J., Long, H., Miralles, S.G., Bisquert, J., Fabregat-Santiago, F., Zhang, M.: The combination of a polymer–carbon composite electrode with a high-absorptivity ruthenium dye achieves an efficient dye-sensitized solar cell based on a thiolate–disulfide redox couple. Phys. Chem. Chem. Phys. 14(19), 7131–7136 (2012)

    CrossRef  CAS  Google Scholar 

  28. Kouhnavard, M., Yifan, D., D’Arcy, J.M., Mishra, R., Biswas, P.: Highly conductive PEDOT films with enhanced catalytic activity for dye-sensitized solar cells. Sol. Energy 211, 258–264 (2020)

    Google Scholar 

  29. Freitag, M., Teuscher, J., Saygili, Y., Zhang, X., Giordano, F., Liska, P., Hua, J., Zakeeruddin, S.M., Moser, J.-E., Grätzel, M., Hagfeldt, A.: Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 11(6), 372–378 (2017)

    CrossRef  CAS  Google Scholar 

  30. Cao, Y., Liu, Y., Zakeeruddin, S.M., Hagfeldt, A., Grätzel, M.: Direct contact of selective charge extraction layers enables high-efficiency molecular photovoltaics. Joule 2(6), 1108–1117 (2018)

    CrossRef  CAS  Google Scholar 

  31. Jeong, J., Kim, M., Seo, J., Lu, H., Ahlawat, P., Mishra, A., Yang, Y., Hope, M.A., Eickemeyer, F.T., Kim, M., Yoon, Y.J., Choi, I.W., Darwich, B.P., Choi, S.J., Jo, Y., Lee, J.H., Walker, B., Zakeeruddin, S.M., Emsley, L., Rothlisberger, U., Hagfeldt, A., Kim, D.S., Grätzel, M., Kim, J.Y.: Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592(7854), 381–385 (2021)

    CrossRef  CAS  Google Scholar 

  32. Chang, N.L., Yi Ho-Baillie, A.W., Basore, P.A., Young, T.L., Evans, R., Egan, R.J.: A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Prog. Photovoltaics Res. Appl. 25(5), 390–405 (2017)

    CrossRef  Google Scholar 

  33. Jiang, F., Liu, T., Zeng, S., Zhao, Q., Min, X., Li, Z., Tong, J., Meng, W., Xiong, S., Zhou, Y.: Metal electrode-free perovskite solar cells with transfer-laminated conducting polymer electrode. Opt. Express 23(3), A83–A91 (2015)

    CrossRef  CAS  Google Scholar 

  34. Kim, K.M., Ahn, S., Jang, W., Park, S., Park, O.O., Wang, D.H.: Work function optimization of vacuum free top-electrode by PEDOT:PSS/PEI interaction for efficient semi-transparent perovskite solar cells. Sol. Energy Mater. Sol. Cells 176, 435–440 (2018)

    CrossRef  CAS  Google Scholar 

  35. Lee, J.H., Heo, J.H., Im, S.H., Park, O.O.: Reproducible dry stamping transfer of PEDOT:PSS transparent top electrode for flexible semitransparent metal halide perovskite solar cells. ACS Appl. Mater. Interfaces 12(9), 10527–10534 (2020)

    CrossRef  CAS  Google Scholar 

  36. Ma, H., Shao, Y., Zhang, C., Lv, Y., Feng, Y., Dong, Q., Shi, Y.: Enhancing the interface contact of stacking perovskite solar cells with hexamethylenediammonium diiodide-modified PEDOT:PSS as an electrode. ACS Appl. Mater. Interfaces 12(37), 42321–42327 (2020)

    CrossRef  CAS  Google Scholar 

  37. Liu, Q., Jiang, Y., Jin, K., Qin, J., Xu, J., Li, W., Xiong, J., Liu, J., Xiao, Z., Sun, K., Yang, S., Zhang, X., Ding, L.: 18% Efficiency organic solar cells. Sci. Bull. 65(4), 272–275 (2020)

    CrossRef  CAS  Google Scholar 

  38. Fan, X., Nie, W., Tsai, H., Wang, N., Huang, H., Cheng, Y., Wen, R., Ma, L., Yan, F., Xia, Y.: PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 6(19), 1900813 (2019)

    CrossRef  CAS  Google Scholar 

  39. Lövenich, W.: PEDOT-properties and applications. Polym. Sci. Ser. C 56(1), 135–143 (2014)

    CrossRef  CAS  Google Scholar 

  40. Zhang, F., Johansson, M., Andersson, M.R., Hummelen, J.C., Inganäs, O.: Polymer photovoltaic cells with conducting polymer anodes. Adv. Mater. 14(9), 662–665 (2002)

    CrossRef  Google Scholar 

  41. Na, S.-I., Kim, S.-S., Jo, J., Kim, D.-Y.: Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv. Mater. 20(21), 4061–4067 (2008)

    CrossRef  CAS  Google Scholar 

  42. Jang, H., Kim, M.S., Jang, W., Son, H., Wang, D.H., Kim, F.S.: Highly conductive PEDOT:PSS electrode obtained via post-treatment with alcoholic solvent for ITO-free organic solar cells. J. Ind. Eng. Chem. 86, 205–210 (2020)

    CrossRef  CAS  Google Scholar 

  43. Song, W., Fan, X., Xu, B., Yan, F., Cui, H., Wei, Q., Peng, R., Hong, L., Huang, J., Ge, Z.: All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 30(26), 1800075 (2018)

    CrossRef  CAS  Google Scholar 

  44. Song, W., Peng, R., Huang, L., Liu, C., Fanady, B., Lei, T., Hong, L., Ge, J., Facchetti, A., Ge, Z.: Over 14% efficiency folding-flexible ITO-free organic solar cells enabled by eco-friendly acid-processed electrodes. iScience 23(4) (2020)

    Google Scholar 

  45. Hu, X., Chen, L., Tan, L., Ji, T., Zhang, Y., Zhang, L., Zhang, D., Chen, Y.: In situ polymerization of ethylenedioxythiophene from sulfonated carbon nanotube templates: toward high efficiency ITO-free solar cells. J. Mater. Chem. A 4(17), 6645–6652 (2016)

    CrossRef  CAS  Google Scholar 

  46. Ahsan Saeed, M., Hyeon Kim, S., Baek, K., Hyun, J.K., Youn Lee, S., Won Shim, J.: PEDOT:PSS:CuNW-based transparent composite electrodes for high-performance and flexible organic photovoltaics under indoor lighting. Appl. Surf. Sci. 567, 150852 (2021)

    Google Scholar 

  47. Park, H., Lee, J.-H., Lee, S., Jeong, S.Y., Choi, J.W., Lee, C.-L., Kim, J.-H., Lee, K.: Retarding ion exchange between conducting polymers and ionic liquids for printable top electrodes in semitransparent organic solar cells. ACS Appl. Mater. Interfaces 12(2), 2276–2284 (2020)

    CrossRef  CAS  Google Scholar 

  48. Kim, S., Lee, E., Lee, Y., Kim, J., Park, B., Jang, S.-Y., Jeong, S., Oh, J., Lee, M.S., Kang, H., Lee, K.: Interface engineering for fabricating semitransparent and flexible window-film-type organic solar cells. ACS Appl. Mater. Interfaces 12(23), 26232–26238 (2020)

    CrossRef  CAS  Google Scholar 

  49. Ji, G., Wang, Y., Luo, Q., Han, K., Xie, M., Zhang, L., Wu, N., Lin, J., Xiao, S., Li, Y.-Q., Luo, L.-Q., Ma, C.-Q.: Fully coated semitransparent organic solar cells with a doctor-blade-coated composite anode buffer layer of phosphomolybdic acid and PEDOT:PSS and a spray-coated silver nanowire top electrode. ACS Appl. Mater. Interfaces 10(1), 943–954 (2018)

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mannix P. Balanay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Baptayev, B., Tashenov, Y., Balanay, M.P. (2022). Conjugated Polymers as Organic Electrodes for Photovoltaics. In: Gupta, R.K. (eds) Organic Electrodes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98021-4_8

Download citation