Skip to main content

Organic Electrodes: An Introduction

  • Chapter
  • First Online:
Organic Electrodes

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The world is moving for electromobility as well as associated decarbonization. The era and community related to it are moving towards the fourth industrial revolution comprising of digital technology and electronic devices. The organic electrode materials (OEMs) obtained from biomass serve to be the best option for sustainable and green lithium batteries due to various features such as low costing, availability in large amounts, high sustainability, environmental compassion, and recyclability. The research on organic electrodes is mainly based on material level despite the performing ability of batteries. The current chapter focuses on the history of organic electrode materials and prospects of elevation, and the challenges faced by organic electrode materials for practical use in the form of density of OEMs and intrinsic electronic conductivity. Later the comprehensive optimization is performed. Finally, we have focused on developing high-quality stimulation for research to obtain future commercialization of OEMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mohammad, F., Arfin, T., Al-Lohedan, H.A.: Biocompatible polylactic acid-reinforced nickel-arsenate composite: studies of electrochemical conductivity, mechanical stability, and cell viability. Mater. Sci. Eng. C102, 42–149 (2019)

    Google Scholar 

  2. Arfin, T.: Emerging trends in lab-on-a-chip for biosensing applications. In: Hussain, C.M., Shukla, S.K., Joshi, G.M. (eds.) Functionalized Nanomaterials Based Devices for Environmental Applications, pp. 199–218. Elsevier, Netherlands (2021)

    Chapter  Google Scholar 

  3. Mohammad, F., Arfin, T., Al-Lohedan, H.A.: Enhanced biological activity and biosorption performance of trimethyl chitosan-loaded cerium oxide particles. J. Ind. Eng. Chem. 45, 33–43 (2017)

    Article  CAS  Google Scholar 

  4. Sophia, A.C., Arfin, T., Lima, E.C.: Recent developments in adsorption of dyes using graphene-based nanomaterials. In: Naushad, M. (ed.) A New Generation Material Graphene: Applications in Water Technology, pp. 439–471. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  5. Arfin, T., Bushra, R., Mohammad, F.: Electrochemical sensor for the sensitive detection of o-nitrophenol using graphene oxide-poly(ethyleneimine) dendrimer-modified glassy carbon electrode. Graph. Technol. 1(1), 1–15 (2016)

    Google Scholar 

  6. Arfin T, Rafiuddin: Transport studies of nickel arsenate membrane. J. Electroanal. Chem. 636(1), 113–122 (2009)

    Google Scholar 

  7. Arfin, T., Jabeen, F., Kriek, R.J.: An electrochemical and theoretical comparison of ionic transport through a polystyrene based titanium-vanadium (1:2) phosphate membrane. Desalination 274(1–3), 206–211 (2011)

    Article  CAS  Google Scholar 

  8. Obulapuram, P.K., Arfin, T., Mohammad, F., Khiste, S.K., Chavali, M., Albalawi, A.N., Al-Lohedan, H.A.: Adsorption, equilibrium isotherm, and thermodynamic studies towards the removal of reactive orange 16 dye using Cu(I)-polyaniline composite. Polymers 13(20), 3490 (2021)

    Article  CAS  Google Scholar 

  9. Obulapuram, P.K., Arfin, T., Mohammad, F., Kumari, K., Khiste, S.K., Al-Lohedan, H.A., Chavali, M.: Surface-enhanced biocompatibility and adsorption capacity of a zirconium phosphate-coated polyaniline composite. ACS Omega 6(49), 33614–33626 (2021)

    Article  CAS  Google Scholar 

  10. Arfin, T., Tarannum, A.: Rapid determination of lead ions using polyaniline-zirconium (IV) iodatebased ion selective electrode. J. Environ. Chem. Eng. 7(1), 102811 (2019)

    Google Scholar 

  11. Wang, J.: Organic-phase biosensors-new tools for flow analysis: a short review. Talanta 40(12), 1905–1909 (1993)

    Article  CAS  Google Scholar 

  12. Wang, J., Lin, M.S.: Mixed plant tissue carbon paste bioelectrode. Anal. Chem. 60(15), 1545–1548 (1988)

    Article  CAS  Google Scholar 

  13. Kaku, S., Nakanishi, S., Horiguchi, K.: Enzyme immunoelectrode for insulin incorporating a membrane partially treated with water vapor plasma. Anal. Chim. Acta 225, 283–292 (1989)

    Article  CAS  Google Scholar 

  14. Warsinke, A., Benkert, A., Scheller, F.W.: Electrochemical immunoassays. Fresen. J. Anal. Chem. 366, 622–634 (2000)

    Article  CAS  Google Scholar 

  15. Sadik, O.A., John, M.J., Wallace, G.G., Barnett, D., Clarke, C., Laing, D.G.: Pulsed amperometric detection of thaumatin using antibody-containing poly(pyrrole) electrodes. Analyst 119, 1997–2000 (1994)

    Article  CAS  Google Scholar 

  16. Bagel, O., Limoges, B., Schollhorn, B., Degrand, C.: Subfemtomolar determination of alkaline phosphatase at a disposable screen-printed electrode modified with a perfluorosulfonated lonomer film. Anal. Chem. 69(22), 4688–4694 (1997)

    Article  CAS  Google Scholar 

  17. Scheller, F.W., Bauer, C.G., Makower, A., Wollenberger, U., Warsinke, A., Bier, F.F.: Coupling of immunoassays with enzymatic recycling electrodes. Anal. Lett. 34(8), 1233–1245 (2007)

    Article  Google Scholar 

  18. Kojima, K., Hiratsuka, A., Suzuki, H., Yano, K., Ikebukuro, K., Karube, I.: Electrochemical protein chip with arrayed immunosensors with antibodies immobilized in a plasma-polymerized film. Anal. Chem. 75(5), 1116–1122 (2003)

    Article  CAS  Google Scholar 

  19. Zak, J., Kuwana, T.: Chemically modified electrodes and electrocatalysis. J. Electroanal. Chem. Interfacial Electrochem. 150(1–2), 645–664 (1983)

    Article  CAS  Google Scholar 

  20. Ugo, P., Moretto, L.M.: Ion-exchange voltammetry at polymer-coated electrodes: principles and analytical prospects. Electroanalysis 7(12), 1105–1113 (1995)

    Article  CAS  Google Scholar 

  21. Mohammad, F., Arfin, T., Saba, N., Jawaid, M., Al-Lohedan, H.A.: Electrical conductivity and biological efficacy of ethyl cellulose and polyaniline-based composites. In: Khan, A., Jawaid, M., Khan, A.A.P., Asiri, A.M. (eds.) Electrically Conductive Polymers and Polymer Composites: From Synthesis to Biomedical Applications, pp. 181–197. Wiley-VCH Verlag, Germany (2018)

    Chapter  Google Scholar 

  22. Arfin, T., Bushra, R., Kriek, R.J.: Ionic conductivity of alkali halides across a polyaniline-zirconium(IV)-arsenate membrane. Anal. Bioanal. Electrochem. 5(2), 206–221 (2013)

    Google Scholar 

  23. Arfin, T., Sonawane, K., Tarannum, A.: Review on detection of phenol in water. Adv. Mater. Lett. 10(111), 753–785 (2019)

    Article  CAS  Google Scholar 

  24. Sadki, S., Schottland, P., Brodie, N., Sabouraud, G.: The mechanism of pyrrole electropolymerization. Chem. Soc. Rev. 29, 283–293 (2000)

    Article  Google Scholar 

  25. Cheng, Y.-J., Luh, T.-Y.: Synthesizing optoelectronic heteroaromatic conjugated polymers by cross-coupling reactions. J. Organomet. Chem. 689(24), 4137–4148 (2004)

    Article  CAS  Google Scholar 

  26. Bao, Z., Chan, W.K., Yu, L.: Exploration of the stille coupling reaction for the synthesis of functional polymers. J. Am. Chem. Soc. 117(50), 12426–12435 (1995)

    Article  CAS  Google Scholar 

  27. Arfin, T., Rangari, S.N.: Graphene oxide-ZnO nanocomposite modified electrode for the detection of phenol. Anal. Methods 10(3), 347–358 (2018)

    Article  CAS  Google Scholar 

  28. Arfin, T.: Functional graphene-based nanodevices: emerging diagnostic tool. In: Kanchi, S., Sharma, D. (eds.) Nanomaterials in Diagnostic Tools and Devices, pp. 85–112. Elsevier, Netherlands (2020)

    Chapter  Google Scholar 

  29. Oyama, N., Sarukawa, T., Mochizuki, Y., Shimomura, T., Yamaguchi, S.: Significant effects of poly(3,4-ethylenedioxythiophene) additive on redox responses of poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) cathode for rechargeable Li batteries. J. Power Sources 189(1), 230–239 (2009)

    Article  CAS  Google Scholar 

  30. Nigrey, P.J., MacInnes, D., Nairns, D.P., MacDiarmid, A.G., Heeger, A.J.: Lightweight rechargeable storage batteries using polyacetylene, (CH)x as the cathode-active material. J. Electrochem. Soc. 128(8), 1651 (1981)

    Article  CAS  Google Scholar 

  31. Oyama, N., Tatsuma, T., Sato, T., Sotomura, T.: Dimercaptan-polyaniline composite electrodes for lithium batteries with high energy density. Nature 373, 598–600 (1995)

    Article  CAS  Google Scholar 

  32. Sakaushi, K., Hosono, E., Nickerl, G., Gemming, T., Zhou, H., Kaskel, S., Eckert, J.: Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nat. Commun. 4, 1485 (2013)

    Article  CAS  Google Scholar 

  33. Zhan, L., Song, Z., Zhang, J., Tang, J., Zhan, H., Zhou, Y., Zhan, C.: PEDOT: cathode active material with high specific capacity in novel electrolyte system. Electrochim. Acta 53(28), 8319–8323 (2008)

    Article  CAS  Google Scholar 

  34. Poizot, P., Dolhem, F.: Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4(6), 2003–2019 (2011)

    Article  CAS  Google Scholar 

  35. Gracia, R., Mecerreyes, D.: Polymers with redox properties: materials for batteries, biosensors and more. Polym. Chem. 4(7), 2206–2214 (2013)

    Article  CAS  Google Scholar 

  36. Liang, Y., Yao, Y.: Positioning organic electrode materials in the battery landscape. Joule 2(9), 1690–1706 (2018)

    Article  CAS  Google Scholar 

  37. Selvakumaran, D., Pan, A., Liang, S., Cai, G.: A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 7, 18209–18236 (2019)

    Article  CAS  Google Scholar 

  38. Li, H., Ma, L., Han, C., Wang, Z., Liu, Z., Tang, Z., Zhi, C.: Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019)

    Article  CAS  Google Scholar 

  39. Zhang, X., Xiao, Z., Liu, X., Mei, P., Yang, Y.: Redox-active polymers as organic electrode materials for sustainable supercapacitors. Renew. Sustain. Energy Rev. 147, 111247 (2021)

    Google Scholar 

  40. Mo, D., Zhou, W., Ma, X., Xu, J.: Facile electrochemical polymerization of 2-(thiophen2-yl)furan and the enhanced capacitance properties of its polymer in acetonitrile electrolyte containing boron trifluoride diethyl etherate. Electrochim. Acta 155, 29–37 (2015)

    Article  CAS  Google Scholar 

  41. Fusalba, F., El Mehdi, N., Breau, L., Bélanger, D.: Physicochemical and electrochemical characterization of polycyclopenta[2,1-b;3,4-b′]dithiophen-4-one as an active electrode for electrochemical supercapacitors. Chem. Mater. 11, 2743–2753 (1999)

    Google Scholar 

  42. Snook, G.A., Chen, G.Z.: Polythiophene-based supercapacitors. J. Electroanal. Chem. 612, 140–146 (2008)

    Article  CAS  Google Scholar 

  43. Li, H., Wang, J., Chu, Q., Wang, Z., Zhang, F., Wang, S.: Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power. Sources 190(2), 578–586 (2009)

    Article  CAS  Google Scholar 

  44. Mo, D., Zhou, W., Ma, X., Xu, J., Jiang, F., Zhu, D.: Alkyl functionalized bithiophene endcapped with 3,4-ethylenedioxythiophene units: synthesis, electropolymerization and the capacitive properties of their polymers. Electrochim. Acta 151, 477–488 (2015)

    Article  CAS  Google Scholar 

  45. Arfin, T., Bhaisare, D.A., Waghmare, S.S.: Development of a PANI/Fe(NO3)2 nanomaterial for reactive orange 16 (RO16) dye removal. Anal. Methods 13(44), 5309–5327 (2021)

    Article  CAS  Google Scholar 

  46. Bushra, R., Arfin, T., Oves, M., Raza, W., Mohammad, F., Khan, M.A., Ahmed, A., Azam, A., Muneer, M.: Development of PANI/MWCNTs decorated with cobalt oxide nanoparticles towards multiple electrochemical, photocatalytic and biomedical application sites. New J. Chem. 40, 9448–9459 (2016)

    Article  CAS  Google Scholar 

  47. Diaz, A.F., Logan, J.A.: Electroactive polyaniline films. J. Electroanal. Chem. Interfacial Electrochem. 111(1), 111–114 (1980)

    Article  CAS  Google Scholar 

  48. Shea, J.J., Luo, C.: Organic electrode materials for metal ion batteries. ACS Appl. Mater Interfaces 12(5), 5361–5380 (2020)

    Article  CAS  Google Scholar 

  49. Larcher, D., Tarascon, J.M.: Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015)

    Google Scholar 

  50. Otteny, F., Perner, V., Wassy, D., Kolek, M., Bieker, P., Winter, M., Esser, B.: Poly(vinylphenoxazine) as fast-charging cathode material for organic batteries. ACS Sustain. Chem. Eng. 8(1), 238–247 (2020)

    Google Scholar 

Download references

Acknowledgements

The author acknowledges the Knowledge Resource Centre, CSIR-NEERI, (CSIR-NEERI/KRC/2021/DEC/HZC/2) for their support. We are thankful to the KIM-Division (CSIR-IICT) for providing a library. The Communication Number for this chapter is IICT/Pubs./2021/362.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arfin, T., Ranjan, P., Bansod, S., Singh, R., Ahmad, S., Neeti, K. (2022). Organic Electrodes: An Introduction. In: Gupta, R.K. (eds) Organic Electrodes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98021-4_1

Download citation

Publish with us

Policies and ethics