Skip to main content

Spectrum Sensing Performance of Cognitive Radio Optimized by Soft Decision Fusion Threshold

  • Conference paper
  • First Online:
Cognitive Radio Oriented Wireless Networks and Wireless Internet (CROWNCOM 2021, WiCON 2021)

Abstract

The study aims to obtain higher spectrum efficiency of the cognitive radio system, effectively solve the hidden terminal problem caused by single user spectrum sensing, and improve the spectrum sensing performance of cognitive radio. Based on the analysis of the hard decision and soft decision fusion threshold, the linear weighted cooperative sensing algorithm is used. The purpose is to optimize the soft decision fusion cooperative spectrum sensing threshold from the two perspectives of minimizing the error probability and maximizing the average throughput of the cognitive network. The mathematical function model of error probability and throughput sensing threshold is established, the expression of the optimal threshold is derived, and the influence of various spectrum sensing parameters on the optimal decision threshold is analyzed. It is found that: when the appropriate sensing threshold is selected, compared with other algorithm models of radio spectrum sensing, the performance of the optimized soft decision fusion model proposed is better. It can reduce the error probability and improve the detection accuracy. When the throughput capacity of the cognitive network reaches the maximum, the optimal threshold obtained by the soft decision algorithm makes the detection probability higher up to 93.83%, and the overall performance of the cognitive system is better. The results have specific practical significance and practical value for the research of cognitive radio spectrum sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, F., Chen, B., Zhu, K.: Full spectrum sharing in cognitive radio networks toward 5G: a survey. IEEE Access 6, 15754–15776 (2018)

    Article  Google Scholar 

  2. Withey, K.L.: Using apps to develop social skills in children with autism spectrum disorder. Interv. Sch. Clin. 52(4), 250–255 (2017)

    Article  Google Scholar 

  3. Xu, X., Zhao, M., Lin, J.: Detecting weak position fluctuations from encoder signal using singular spectrum analysis. ISA Trans. 71, 440–447 (2017)

    Article  Google Scholar 

  4. Dardikman, G., Turko, N.A., Nativ, N., Mirsky, S.K., Shaked, N.T.: Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization. Opt. Express 25(26), 33400–33415 (2017)

    Article  Google Scholar 

  5. Sultana, A., Zhao, L., Fernando, X.: Efficient resource allocation in device-to-device communication using cognitive radio technology. IEEE Trans. Veh. Technol. 66(11), 10024–10034 (2017)

    Article  Google Scholar 

  6. Zhang, M., Diao, M., Guo, L.: Convolutional neural networks for automatic cognitive radio waveform recognition. IEEE Access 5, 11074–11082 (2017)

    Article  Google Scholar 

  7. Budati, A.K., Valiveti, H.: Identify the user presence by GLRT and NP detection criteria in cognitive radio spectrum sensing. Int. J. Commun. Syst. 35(2), 4142–4153 (2019)

    Google Scholar 

  8. Arjoune, Y., Kaabouch, N.: A comprehensive survey on spectrum sensing in cognitive radio networks: recent advances, new challenges, and future research directions. Sensors 19(1), 126–133 (2019)

    Article  Google Scholar 

  9. Mu, J., Jing, X., Huang, H., Gao, N.: Subspace-based method for spectrum sensing with multiple users over fading channel. IEEE Commun. Lett. 22(4), 848–851 (2017)

    Article  Google Scholar 

  10. Anandakumar, H., Umamaheswari, K. An efficient optimized handover in cognitive radio networks using cooperative spectrum sensing. Intell. Autom. Soft Comput. 1–8 (2017). https://doi.org/10.1080/10798587.2017.1364931

  11. Liu, X., Jia, M., Na, Z., Lu, W., Li, F.: Multi-modal cooperative spectrum sensing based on dempster-shafer fusion in 5G-based cognitive radio. IEEE Access 6, 199–208 (2017)

    Article  Google Scholar 

  12. Wan, R., Ding, L., Xiong, N., Shu, W., Yang, L.: Dynamic dual threshold cooperative spectrum sensing for cognitive radio under noise power uncertainty. HCIS 9(1), 1–21 (2019). https://doi.org/10.1186/s13673-019-0181-x

    Article  Google Scholar 

  13. Khalid, L., Anpalagan, A.: Emerging cognitive radio technology: principles, challenges and opportunities. Comput. Electr. Eng. 36(2), 358–366 (2010)

    Article  Google Scholar 

  14. Wang, Y., Wang, Y., Zhou, F., Wu, Y., Zhou, H.: Resource allocation in wireless powered cognitive radio networks based on a practical non-linear energy harvesting model. IEEE Access 5, 1–14 (2017)

    Google Scholar 

  15. Wang, Y., Wu, Y., Zhou, F., Chu, Z., Wu, Y., Yuan, F.: Multi-objective resource allocation in a NOMA cognitive radio network with a practical non-linear energy harvesting model. IEEE Access 6, 12973–12982 (2017)

    Article  Google Scholar 

  16. Li, Z., Wu, W., Liu, X., Qi, P.: Improved cooperative spectrum sensing model based on machine learning for cognitive radio networks. IET Commun. 12(19), 2485–2492 (2018)

    Article  Google Scholar 

  17. Liu, C., Wang, J., Liu, X., Liang, Y.C.: Deep CM-CNN for spectrum sensing in cognitive radio. IEEE J. Sel. Areas Commun. 37(10), 2306–2321 (2019)

    Article  Google Scholar 

  18. Vimal, S., Kalaivani, L., Kaliappan, M., Suresh, A., Gao, X.-Z., Varatharajan, R.: Development of secured data transmission using machine learning-based discrete-time partially observed Markov model and energy optimization in cognitive radio networks. Neural Comput. Appl. 32(1), 151–161 (2018). https://doi.org/10.1007/s00521-018-3788-3

    Article  Google Scholar 

  19. Abo-Zahhad, M.A., Ahmed, S.M., Farrag, M.A., BaAli, K.A.: Wideband cognitive radio networks based compressed spectrum sensing: a survey. J. Signal Inform. Process. 9(02), 122–136 (2018)

    Article  Google Scholar 

  20. Jia, M., Liu, X., Gu, X., Guo, Q.: Joint cooperative spectrum sensing and channel selection optimization for satellite communication systems based on cognitive radio. Int. J. Satell. Commun. Network. 35(2), 139–150 (2017)

    Article  Google Scholar 

  21. Abbadi, A., Bouhedjeur, H., Bellabas, A., Menni, T., Soltani, F.: Generalized closed-form expressions for CFAR detection in heterogeneous environment. IEEE Geosci. Remote Sens. Lett. 15(7), 1011–1015 (2018)

    Article  Google Scholar 

  22. Liu, S., He, J., Wu, J.: Dynamic cooperative spectrum sensing based on deep multi-user reinforcement learning. Appl. Sci. 11(4), 1884–1896 (2021)

    Article  Google Scholar 

  23. Best, G., Faigl, J., Fitch, R.: Online planning for multi-robot active perception with self-organising maps. Auton. Robot. 42(4), 715–738 (2017). https://doi.org/10.1007/s10514-017-9691-4

    Article  Google Scholar 

  24. Singh, S., Sharma, S. Performance Analysis of Spectrum sensing Techniques over TWDP fading channels for CR based IoTs. AEU – Int. J. Electron. Commun. 80, 80–92 (2017)

    Google Scholar 

  25. Ni, S., Chang, H., Xu, Y.: Adaptive cooperative spectrum sensing based on SNR estimation in cognitive radio networks. J. Inform. Process. Syst. 15(3), 604–615 (2019)

    Google Scholar 

  26. Muhammad, K., Hussain, T., Tanveer, M., Sannino, G., de Albuquerque, V.H.C.: Cost-effective video summarization using deep CNN with hierarchical weighted fusion for IoT surveillance networks. IEEE Internet Things J. 7(5), 4455–4463 (2019)

    Article  Google Scholar 

  27. Rajendran, S., Meert, W., Giustiniano, D., Lenders, V., Pollin, S.: Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. IEEE Trans. Cogn. Commun. Network. 4(3), 433–445 (2018)

    Article  Google Scholar 

  28. Liu, X., Li, F., Na, Z.: Optimal resource allocation in simultaneous cooperative spectrum sensing and energy harvesting for multichannel cognitive radio. IEEE Access 5, 3801–3812 (2017)

    Article  Google Scholar 

  29. Guo, H., Jiang, W., Luo, W.: Linear soft combination for cooperative spectrum sensing in cognitive radio networks. IEEE Commun. Lett. 21(7), 1573–1576 (2017)

    Article  Google Scholar 

  30. Eze, J., Zhang, S., Liu, E., Eze, E.: Cognitive radio-enabled internet of vehicles: a cooperative spectrum sensing and allocation for vehicular communication. IET Netw. 7(4), 190–199 (2018)

    Article  Google Scholar 

  31. Wei, G., Zhang, B., Ding, G., Zhao, B., Guo, K., Guo, D. On the detection of a non-cooperative beam signal based on wireless sensor networks. Secur. Commun. Netw. 2020, 122–136 (2020)

    Google Scholar 

  32. Khan, M.S., Gul, N., Kim, J., Qureshi, I.M., Kim, S.M. A genetic algorithm-based soft decision fusion scheme in cognitive IoT networks with malicious users. Wireless Commun. Mobile Comput. 2020, 254–263 (2020)

    Google Scholar 

  33. El Mahdy, A., Alexan, W.: A threshold-free LLR-based scheme to minimize the Ber for decode-and-forward relaying. Wireless Pers. Commun. 100(3), 87–801 (2018)

    Article  Google Scholar 

  34. Zhang, L., Liang, Y.-C.: Average throughput analysis and optimization in cooperative IoT networks with short packet communication. IEEE Trans. Veh. Technol. 67(12), 11549–21162 (2018)

    Article  Google Scholar 

  35. Birgin, E., Martínez, J.: Complexity and performance of an Augmented Lagrangian algorithm. Optimiz. Meth. Softw. 35(5), 885–920 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chungang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, G., Sun, X., Liu, C. (2022). Spectrum Sensing Performance of Cognitive Radio Optimized by Soft Decision Fusion Threshold. In: Jin, H., Liu, C., Pathan, AS.K., Fadlullah, Z.M., Choudhury, S. (eds) Cognitive Radio Oriented Wireless Networks and Wireless Internet. CROWNCOM WiCON 2021 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-030-98002-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98002-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98001-6

  • Online ISBN: 978-3-030-98002-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics