Abstract
Cultural heritage constitutive materials can provide excellent substrates for microbial colonisation, highly influenced by thermo-hygrometric parameters. In cultural heritage-related environments, a detrimental microbial load may be present both on artworks surface and in the aerosol. Confined environments (museums, archives, deposits, caves, hypogea) are characterised by peculiar structures and different thermo-hygrometric conditions, influencing the development of a wide range of microbial species, able to induce artefact biodeterioration and to release biological particles in the aerosol (spores, cellular debrides, toxins, allergens) potentially dangerous for the human health (visitors/users). In order to identify the real composition of the biological consortia, highlighting also the symbiotic relationships between microorganisms (cyanobacteria, bacteria, fungi) and macro-organisms (plants, bryophyte, insects), an interdisciplinary approach is needed.
The results from in vitro culture, microscopy and molecular biology analysis are essential for a complete understanding of both microbial colonisation of the cultural objects and the potential relationship with illness to human. Concerning the bioaerosol, of crucial importance are the time and techniques for sampling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
EAN, European Aeroallergen Network; RIMA, Rete Italiana di Monitoraggio in Aerobiologia; REA, Red Española de Aerobiología; RNSA, Réseau National de Surveillance Aérobiologique (France); National Allergy Bureau (USA).
- 5.
UNI 11108:2004—Method for sampling and counting airborne pollen grains and fungal spores (UNI, Italian standardisation body).
- 6.
CEN EN 16868:2019—Ambient air—Sampling and analysis of airborne pollen grains and fungal spores for networks related to allergy—Volumetric Hirst method.
References
Andersen AA (1958) New sampler for the collection, sizing, and enumeration of viable airborne particles. J Bact 76(5):471–484
Bernardi A (2009) Microclimate inside cultural heritage buildings. Il Prato, Padova, p 171. ISBN: 978-88-6336-032-5
Blais-Lecours P, Perrott P, Duchaine C (2015) Non-culturable bioaerosols in indoor settings: impact on health and molecular approaches for detection. Atmos Environ 110:45–53. https://doi.org/10.1016/j.atmosenv.2015.03.039
Bonazza A, Maxwell I, Drdácký M, Vintzileou E, Hanus C, Ciantelli C, De Nuntiis P et al (2018) Safeguarding cultural heritage from natural and man-made disasters. A comparative analysis of risk management in the EU. ISBN 978-92-79-73946-0. https://doi.org/10.2766/224310
Bonazza A, Sardella A, Cacciotti R, Kaiser A, Hanus C, De Nuntiis P, Hanus C, Maxwell I, Drdacký T, Drdacký M (2021) Safeguarding cultural heritage from climate change related hydrometeorological hazards in Central Europe. Int J Disaster Risk Reduct 63:102455, ISSN 2212-4209. https://doi.org/10.1016/j.ijdrr.2021.102455
Borrego S, Lavin P, Perdomo I, Gómez de Saravia S, Guiamet P (2012) Determination of indoor air quality in archives and biodeterioration of the documentary heritage. ISRN Microbiol 2012:1–10
Brimblecombe P (1990) The composition of museum atmosphere. Atmos Environ 24B:1–8. https://doi.org/10.1016/0957-1272(90)90003-D
Cacciotti R, Kaiser A, Sardella A, De Nuntiis P, Drdacky M (2021) Climate-change-induced disasters and cultural heritage: optimizing management strategies in Central Europe. Clim Risk Manag 32(15):100301. https://doi.org/10.1016/j.crm.2021.100301
Camuffo D (2007) Church heating and the preservation of the cultural heritage: guide to the analysis of the pros and cons of various heating systems. Electa Mondadori, Milan. ISBN: 88-370-5034-8
Camuffo D (2019) Microclimate for cultural heritage – measurement, risk assessment, conservation, restoration, and maintenance of indoor and outdoor monuments, 3rd edn, vol 23. Elsevier Science, New York, p 582. ISBN: 978–0–444-64106-9
Camuffo D, Sturaro G, Valentino A, Camuffo M (1999) The conservation of artworks and hot air heating systems in Churches: are they compatible? The case of Rocca Pietore. Italian Alps Stud Conserv 44(3):209–216. https://doi.org/10.2307/1506706
Caneva G, De Nuntiis P, Fornaciari M, Ruga L, Valenti P, Pasquariello G (2020) Aerobiology applied to the preventive conservation of cultural heritage. Aerobiologia 36:99–103. https://doi.org/10.1007/s10453-019-09589-9
Cappitelli F, Zanardini E, Sorlini C (2004) The biodeterioration of synthetic resins used in conservation. Macromol Biosci 4:399–406. https://doi.org/10.1002/mabi.200300055
Cassar M (1995) Environmental management: guidelines for museums and galleries. Routledge, London, p 165
Castillo NI, Ibáñez M, Beltrán E, Rivera-Monroy J, Ochoa JC, Páez-Castillo M, Posada-Buitrago ML, Sulyok M, Hernández F (2016) Identification of mycotoxins by UHPLC–QTOF MS in airborne fungi and fungi isolated from industrial paper and antique documents from the Archive of Bogotá. Environ Res 144(A):130–138. https://doi.org/10.1016/j.envres.2015.10.031
Cavallini T, Massa S, Russo A (1991) Optimal environmental conditions in museums. In: Science, technology and European cultural heritage: proceedings of the European symposium, Bologna, 13–16 June 1989. Butterworth-Heinemann Publishers, Oxford/Boston, pp 626–631. ISBN: 9780750602372
Ciferri O (1999) Microbial degradation of paintings. Appl Environ Microbiol 65(3):879–885. https://doi.org/10.1128/aem.65.3.879-885.1999
Cox CS, Wathes CM (1995) Bioaerosols handbook. CRC Press, Lewis Publishers, Boca Raton, p 656
De Guichen G (1980) Climate in museums: measurement. ICCROM, Rome
De Guichen G, Kabaoglu C (1985) How to make a rotten show-case. Museum (UNESCO) 146:64–67
De Nuntiis P, Maggi O, Mandrioli P, Ranalli G, Sorlini C (2003) Monitoring the biological aerosol. In: Mandrioli P, Caneva G, Sabbioni C (eds) Cultural heritage and aerobiology – methods and measurement techniques for biodeterioration monitoring. Kluwer Academic Publishers, Dordrecht, pp 107–144
Després VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, Frohlich-Nowoisky J, Elbert W, Andreae MO, Pöschl U, Jaenicke R (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus Ser B 64:15598. https://doi.org/10.3402/tellusb.v64i0.15598
Di Carlo E, Chisesi R, Barresi G, Barbaro S, Lombardo G, Rotolo V, Sebastianelli M, Travagliato G, Palla F (2016) Fungi and bacteria in indoor cultural heritage environments: microbial related risks for artworks and human health. Environ Ecol Res 4(5):257–264. https://doi.org/10.13189/eer.2016.040504
Douwes J, Thorne P, Pearce N, Heederik D (2003) Review bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47:187–200. https://doi.org/10.1073/pnas.0811003106
Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Poschl U (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci 106:12814–12819. https://doi.org/10.1073/pnas.0811003106
Fuzzi S, Mandrioli P, Perfetto A (1997) Fog droplets – an atmospheric source of secondary biological aerosol particles. Atmos Environ 31:287–290. https://doi.org/10.1016/1352-2310(96)00160-4
Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier van der Gon H, Facchini MC, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik JG, Spracklen DV, Vignati E, Wild M, Williams M, Gilardoni G (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 15:8217–8299. https://doi.org/10.5194/acp-15-8217-2015
Gaüzère C, Moletta-Denat M, Bousta F, Moularat S, Orial G, Ritoux S, Godon JJ, Robine E (2013) Reliable procedure for molecular analysis of airborne microflora in three indoor environments: an office and two different museum contexts. Clean–Soil Air Water 41(3):226–234. https://doi.org/10.1002/clen.201100699
Gaüzère C, Moletta-Denat M, Blanquart H, Ferreira S, Moularat S, Godon J-J, Robine E (2014) Stability of airborne microbes in the louvre museum over time. Indoor Air 24:29–40. https://doi.org/10.1111/ina.12053
Getty Conservation Institute (1994) Preventive conservation. In: Knell S (ed) Care of collections. Routledge, London, pp 83–87. https://www.taylorfrancis.com/chapters/edit/10.4324/9780203974711-18/preventive-conservation?context=ubx&refId=52f7f73c-7f59-4359-9bbd-9ee804d366aa
Gregory PH (1973) The microbiology of the atmosphere, 2nd edn. Aylesbury, Leonard Hall, p 377
Griffith WD, De Cosemo GAL (1994) The assessment of bioaerosols: a critical review. J Aerosol Sci 25(8):1425–1458. https://doi.org/10.1016/0021-8502(94)90218-6
Gudmundsson G, Monick MM, Hunninghake GW (1999) Viral infection modulates expression of hypersensitivity pneumonitis. J Immunol 162(12):7397–7401
Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd edn. Wiley Interscience, New York, p 504
Hirst JM (1995) Bioaerosols: introduction, retrospect and prospect. In: Cox CS, Wathes CM (eds) Bioaerosols handbook. CRC Press, Lewis Publishers, Boca Raton, pp 5–14
Hueck HJ (2001) The biodeterioration of materials: an appraisal (reprinted). Int Biodeterior Biodegradation 48(1–4):5–11. https://doi.org/10.1016/S0964-8305(01)00061-0
IBC (ed) (2007) Oggetti nel tempo. Principi e tecniche di conservazione preventiva. Clueb, Bologna, pp 258. ISBN: 978-88-491-2866-6
Jaenicke R (2005) Abundance of cellular material and proteins in the atmosphere. Science 308(5718):73. https://doi.org/10.1126/science.1106335
Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations, a review. Sci Total Environ 326(1–3):51–180. https://doi.org/10.1016/j.citotenv.2003.11.021
Kavklera K, Gunde-Cimermanb N, Zalarb P, Demšard A (2015) Fungal contamination of textile objects preserved in Slovene museums and religious institutions. Intern Biodeter Biodegr 97:51–59. https://doi.org/10.1016/j.ibiod.2014.09.020
Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21(11):638–644. https://doi.org/10.1016/j.tree.2006.07.004
Lavin P, Gómez de Saravia SG, Guiamet PS (2014) An environmental assessment of biodeterioration in document repositories. Biofouling 30(5):561–569. https://doi.org/10.1080/08927014.2014.897334
Lazaridis M, Katsivela E, Kopanakis I, Raisi PG (2015) Indoor/outdoor particulate matter concentrations and microbial load in cultural heritage collections. Herit Sci 3:34. https://doi.org/10.1186/s40494-015-0063-0
Letch T (2016) Evaluation of a parchment document, the 13th century incorporation charter for the city of Krakow, Poland, for microbial hazards. Appl Environ Microbiol 82:2620–2631. https://doi.org/10.1128/AEM.03851-15
Lighthart B, Stetzenbach LD (1994) Distribution of microbial bioaerosol. In: Lighthart B, Mohr AJ (eds) Atmospheric microbial aerosols: theory and applications. Springer, Boston, MA, pp 68–98. https://doi.org/10.1007/978-1-4684-6438-2_4
MacNeil L, Kauri T, Robertson W (1995) Molecular techniques and their potential application in monitoring the microbiological quality of indoor air. Can J Microbiol 41(8):657–665. https://doi.org/10.1139/m95-091
Mandrioli P (1985) L’Aerobiologia e le sue moderne applicazioni. Aerobiologia 1:2–4. https://doi.org/10.1007/BF02447689
Mandrioli P (2015) The importance of environmental parameters for the conservation of mural paintings. Specificity of the Sistine environment. Conference proceedings: the Sistine Chapel, twenty years later. New breath new light, Auditorium Conciliazione, Roma 30-31/10/2014. Edizioni Musei Vaticani, Roma, pp 119–133. ISBN: 978-88-8271-366-9
Mandrioli P, Ariatti A (2001) Aerobiology: future course of action. Aerobiologia 17:1–10. https://doi.org/10.1023/A:1007602928928
Mandrioli P, Negrini MG, Scarani C, Tampieri F, Trombetti F (1980) Mesoscale transport of Corylus pollen grains in winter atmosphere. Grana 19(3):227–233. https://doi.org/10.1080/00173138009425007
Mandrioli P, Negrini MG, Cesari G, Morgan G (1984) Evidence for long range transport of biological and anthropogenic aerosol particles in the atmosphere. Grana 23(1):43–53. https://doi.org/10.1080/00173138409428876
Mandrioli P, Comtois P, Levizzani V (eds) (1998) Methods in aerobiology. Pitagora Editrice, Bologna, pp. 276. ISBN: 88-371-1043-X
Michalski S (1994) A systematic approach to preservation: description and integration with other museum activities. Stud Conserv 39(S-2):8–11
Micheluz A, Manente S, Tigini V, Prigione V, Pinzari F, Ravagnan G, Varese GC (2015) The extreme environment of a library: xerophilic fungi inhabiting indoor niches. Int Biodeterior Biodegradation 99:1–7. https://doi.org/10.1016/j.ibiod.2014.12.012
Montacutelli R, Maggi O, Tarsitani G, Gabrielli N (2000) Aerobiological monitoring of the “Sistine Chapel”: airborne bacteria and microfungi trends. Aerobiologia 3:441–448. https://doi.org/10.1023/A:1026525432412
Năşcuţiu AM (2010) Viable non-culturable bacteria. Bacteriol Virusol Parazitol Epidemiol 55:11–18
Nugari MP (2003) The aerobiology applied to the conservation of works of art. In: Saiz-Jimenez C (ed) Coalition advanced course on biological problems in cultural heritage, Florence 8–9 November 2002. Coalition Newsletter 6(SI): 8–10
Nugari MP, Ricci S, Roccardi A, Monte M (2003) Churches and hypogea. In: Mandrioli P, Caneva G, Sabbioni C (eds) Cultural heritage and aerobiology – methods and measurement techniques for biodeterioration monitoring. Kluwer Academic Publishers, Dordrecht, pp 207–224
Ortega-Morales BO, Narváez-Zapata J, Reyes-Estebanez M, Quintana P, De la Rosa SDC (2016) Bioweathering potential of cultivable fungi associated with semi-arid surface microhabitats of Mayan buildings. Front Microbiol 7:201. https://doi.org/10.3389/fmicb.2016.00201
Paiva de Carvalho HP, Sequeira SO, Pinho D, Trovao J, Fernandes da Costa RM, Egas C, Macedo MF, Portugal A (2019) Combining an innovative non-invasive sampling method and high-throughput sequencing to characterize fungal communities on a canvas painting. Int Biodeterior Biodegradation 145:104816. https://doi.org/10.1016/j.ibiod.2019.104816
Palla F (2015) Biological risk for the conservation and exhibition of historical–artistic artefacts in confined spaces. In: Lorusso S, Natali A, Palla F (eds) Risk management in the cultural heritage sector: museums, libraries and archives. Mimesis Edizioni, Milano-Udine, pp 95–108
Palla F, Di Carlo E, Barresi G, Billeci N, Chisesi R, Barbaro S, Sebastianelli S (2014) Bioaerosol in indoor environments for conservation of cultural heritage: potential risks for historical-artistic manifacts and human health. In: International Conference Indoor Air Quality in Heritage and Historic Environments, Prague, Kaiserštejn Palace, April 13–16 2014, p 47
Pashley CH, Fairs A, Free RC, Wardlaw AJ (2012) DNA analysis of outdoor air reveals a high degree of fungal diversity, temporal variability, and genera not seen by spore morphology. Fungal Biol 116(2):214–224. https://doi.org/10.1016/j.funbio.2011.11.004
Pasquarella C, Pitzurra O, Savino A (2000) The index of microbial air contamination. J Hosp Infect 46:241–256. https://doi.org/10.1053/jhin.2000.0820
Pasquarella C, Balocco C, Pasquariello G, Petrone G, Saccani E, Manotti P, Ugolotti M, Palla F, Maggi O, Albertini R (2015) A multidisciplinary approach to the study of cultural heritage environments: experience at the Palatina library in Parma. Sci Total Environ 536:557–567. https://doi.org/10.1016/j.scitotenv.2015.07.105
Pitzurra M, Savino A, Pasquarella C, Poletti L (1997) A new method to study the microbial contamination on surfaces. Hyg Med 22:77–92
Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed Engl 44(46):7520–7540. https://doi.org/10.1002/anie.200501122
Puškárová A, Bučková M, Habalová B, Kraková L, Maková A, Pangallo D (2016) Microbial communities affecting albumen photography heritage: a methodological survey. Sci Rep 6(20810). https://doi.org/10.1038/srep20810
Ramos T, Stephens B (2014) Tools to improve built environment data collection for indoor microbial ecology investigations. Build Environ 81:243–257. https://doi.org/10.1016/j.buildenv.2014.07.004
Ranalli G, Zanardini E, Andreotti A, Colombini MP, Corti C, Bosch-Roig P, De Nuntiis P, Lustrato G, Mandrioli P, Rampazzi L, Giantomassi C, Zari D (2018) Hi-tech restoration by two steps biocleaning process of triumph of death fresco at the Camposanto monumental cemetery (Pisa, Italy). J Appl Microbiol 125(3):800–812. https://doi.org/10.1111/jam.13913
Rantio-Lehtimäiki A (1994) Short, medium and long range transported airborne particles in viability and antigenicity analyses. Aerobiologia 10(2):175–181. https://doi.org/10.1007/BF02459233
Ruga L, Orlandi F, Romano B, Fornaciari M (2015) The assessment of fungal bioaerosols in the crypt of St. Peter in Perugia (Italy). Int Biodeter Biodegradr 98:121–130. https://doi.org/10.1016/j.ibiod.2014.12.010
Sabbioni C, Mandrioli P, Bonazza A, De Nuntiis P, Guaraldi C (2008) Indagini diagnostiche finalizzate alla identificazione delle cause di degrado degli affreschi del camposanto monumentale di Pisa. Report tecnico contratto OPA Pisa – ISAC CNR, Bologna, p 154
Saiz-Jimenez C, Gonzalez JM (2007) Aerobiology and cultural heritage: some reflections and future challenges. Aerobiologia 23:89–90. https://doi.org/10.1007/s10453-007-9059-x
Sanmartín P, De Araujo A, Vasanthakumar A (2016) Melding the old with the new: trends in methods used to identify, monitor, and control microorganism on cultural heritage materials. Microb Ecol 71(4):1–17. https://doi.org/10.1007/s00248-016-0770-4
Schlesinger P, Mamane Y, Grishkan I (2006) Transport of microorganisms to Israel during Saharan dust events. Aerobiologia 22:259–273. https://doi.org/10.1007/s10453-006-9038-7
Schwendemann AB, Wang G, Osborn JM, Thatcher SL (2007) Aerodynamics of saccate pollen and its implications for wind pollination. Am J Bot 94(8):1371–1381. https://doi.org/10.3732/ajb.94.8.1371
Sedlbauer K (2002) Prediction of mould growth by hygrothermal calculation. J Build Phys 25:321–336. https://doi.org/10.1177/0075424202025004093
Sesana E, Gagnon AS, Ciantelli C, Cassar J, Hughes JJ (2021) Climate change impacts on cultural heritage: a literature review. Wiley Interdiscip Rev-Clim Chang 12(e710). https://doi.org/10.1002/wcc.710
Šimonovičová A, Kraková L, Pangallo D, Majorošová M, Piecková E, Bodoriková S, Dörnhoferová M (2015) Fungi on mummified human remains and in the indoor air in the Kuffner family crypt in Sládkovičovo (Slovakia). Int Biodeter Biodegrad 99:157–164. https://doi.org/10.1016/j.ibiod.2014.12.011
Skóra J, Gutarowska B, Pielech-Przybylska K, Stępień Ł, Pietrzak K, Piotrowska M, Pietrowski P (2015) Assessment of microbiological contamination in the work environments of museums, archives and libraries. Aerobiologia 31(3):389–401
Sterflinger K (2010) Fungi: their role in the deterioration of cultural heritage. Fung Biol Rev 24:47–55. https://doi.org/10.1016/j.fbr.2010.03.003
Sterflinger K, Pinzari F (2012) The revenge of time: fungal deterioration of cultural heritage with particular reference to books, paper and parchment. Environ Microbiol 14(3):559–566
Su C, Lei L, Duan Y, Zhang KQ, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93(3):993–1003. https://doi.org/10.1007/s00253-011-3800-7
Tampieri F, Mandrioli P, Puppi GL (1977) Medium range transport of airborne pollen. Agr Meteorol 18(1):9–20. https://doi.org/10.1016/0002-1571(77)90023-1
Tarsitani G, Moroni C, Cappitelli F, Pasquariello G, Maggi O (2014) Microbiological analysis of surfaces of Leonardo Da Vinci’s Atlantic codex: biodeterioration risk. Int J Microbiol 2014:214364–214371. https://doi.org/10.1155/2014/214364
Thomson G (1986) The museum environment, 2nd edn. Butterworths, Los Angeles, p 292
United Nations, Sendai Framework for Disaster Risk Reduction 2015–2030 (2015) United Nations Office for Disaster Risk Reduction (UNISRD)
Urzì C, De Leo F, De Hoog GS, Sterflinger K (2000) Recent advances in the molecular biology and ecophysiology of meristematic stone-inhabiting fungi. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art. The role of microbial communities in the degradation and protection of cultural heritage. Kluwer Academic Plenum, London, pp 3–19
Valentin N (2003) Microbial contamination in museums collections: organic materials. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. Balkema Pub, Lisse, pp 85–91
Varas-Muriel MJ, Fort R, Martínez-Garrido MI, Zornoza-Indart A, López-Arce P (2014) Fluctuations in the indoor environment in Spanish rural churches and their effects on heritage conservation: hygro-thermal and CO2 conditions monitoring. Build Environ 82:97–109. https://doi.org/10.1016/j.buildenv.2014.08.010
Walser SM, Gerstner DG, Brenner B, Bünger J, Eikmann T, Janssen B, Kolb S, Kolk A, Nowak D, Raulf M, Sagunski H, Sedlmaier N, Suchenwirth R, Wiesmüller G, Wollin K-M, Tesseraux I, Herr C (2015) Evaluation of exposure-response relationships for health effects of microbial bioaerosols—a systematic review. Int J Hyg Environ Health. https://doi.org/10.1016/j.ijheh.2015.07.004
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Nuntiis, P.D., Palla, F. (2022). Bioaerosol. In: Palla, F., Barresi, G. (eds) Biotechnology and Conservation of Cultural Heritage. Springer, Cham. https://doi.org/10.1007/978-3-030-97585-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-97585-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97584-5
Online ISBN: 978-3-030-97585-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)