Skip to main content

GAN-Assisted YUV Pixel Art Generation

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13151))

Included in the following conference series:

  • 2120 Accesses

Abstract

Procedural Content Generation (PCG) in games has grown in popularity in recent years, with Generative Adversarial Networks (GANs) providing a promising option for applying PCG for game artistic asset generation. In this paper, we introduce a model that uses GANs and the YUV colour encoding system for automatic colouring of game assets. In this model, conditional GANs in Pix2Pix architecture are chosen as the main structure and the YUV colour encoding system is used for data preprocessing and result visualisation. We experimented with parameter settings (number of epochs, activation functions, optimisers) to optimise output. Our experimental results show that the proposed model can generate evenly coloured outputs for both small and larger datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)

    Google Scholar 

  2. Baker, C., Schleser, M., Molga, K.: Aesthetics of mobile media art. J. Media Pract. 10(2–3), 101–122 (2009)

    Article  Google Scholar 

  3. Biswas, S., Rohdin, J., Drahanskỳ, M.: Synthetic retinal images from unconditional GANs. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2736–2739. IEEE (2019)

    Google Scholar 

  4. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools 25(11), 120–123 (2000)

    Google Scholar 

  5. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  6. Folmer, E.: Component based game development – a solution to escalating costs and expanding deadlines? In: Schmidt, H.W., Crnkovic, I., Heineman, G.T., Stafford, J.A. (eds.) CBSE 2007. LNCS, vol. 4608, pp. 66–73. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73551-9_5

    Chapter  Google Scholar 

  7. Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content generation for games: a survey. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 9(1), 1–22 (2013)

    Article  Google Scholar 

  8. Horsley, L., Perez-Liebana, D.: Building an automatic sprite generator with deep convolutional generative adversarial networks. In: 2017 IEEE Conference on Computational Intelligence and Games (CIG), pp. 134–141. IEEE (2017)

    Google Scholar 

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  10. Lan, H., Initiative, A.D.N., Toga, A.W., Sepehrband, F.: Three-dimensional self-attention conditional GAN with spectral normalization for multimodal neuroimaging synthesis. Magn. Reson. Med. 86(3), 1718–1733 (2021)

    Article  Google Scholar 

  11. Oliphant, T.: NumPy: A Guide to NumPy. Trelgol Publishing, USA (2006). http://www.numpy.org/. Accessed 5 Oct 2021

  12. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  13. Serpa, Y.R., Rodrigues, M.A.F.: Towards machine-learning assisted asset generation for games: a study on pixel art sprite sheets. In: 2019 18th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), pp. 182–191. IEEE (2019)

    Google Scholar 

  14. Wang, G., Fu, R., Sun, B., Lv, J., Sheng, T., Tan, Y.: Comparison of two types of color transfer algorithms in YUV and lab color spaces. In: AOPC 2017: Optical Sensing and Imaging Technology and Applications, vol. 10462, p. 104622V. International Society for Optics and Photonics (2017)

    Google Scholar 

  15. Wen, X., Pan, Z., Hu, Y., Liu, J.: Generative adversarial learning in YUV color space for thin cloud removal on satellite imagery. Remote Sens. 13(6), 1079 (2021)

    Article  Google Scholar 

  16. Wu, M., et al.: Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space. Vis. Comput. 37, 1–23 (2020)

    Google Scholar 

  17. Zeng, H., Zhang, X., Yu, Z., Wang, Y.: SR-ITM-GAN: learning 4K UHD HDR with a generative adversarial network. IEEE Access 8, 182815–182827 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penny Sweetser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Z., Sweetser, P. (2022). GAN-Assisted YUV Pixel Art Generation. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics