Skip to main content

A Heuristic Repair Algorithm for the Maximum Stable Marriage Problem with Ties and Incomplete Lists

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13151))

Included in the following conference series:

  • 1754 Accesses

Abstract

This paper proposes a heuristic repair algorithm to find a maximum weakly stable matching for the stable marriage problem with ties and incomplete lists. Our algorithm is designed including a well-known Gale-Shapley algorithm to find a stable matching for the stable marriage problem with ties and incomplete lists and a heuristic repair function to improve the found stable matching in terms of maximum size. Experimental results for large randomly generated instances of the problem showed that our algorithm is efficient in terms of both execution time and solution quality for solving the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, D.J., Irving, R.W., Manlove, D.F.: The student-project allocation problem. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 474–484. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24587-2_49

    Chapter  Google Scholar 

  2. Askalidis, G., Immorlica, N., Kwanashie, A., Manlove, D.F., Pountourakis, E.: Socially stable matchings in the hospitals/residents problem. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 85–96. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6_8

    Chapter  Google Scholar 

  3. Codognet, P., Diaz, D.: Yet another local search method for constraint solving. In: Steinhöfel, K. (ed.) SAGA 2001. LNCS, vol. 2264, pp. 73–90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45322-9_5

    Chapter  Google Scholar 

  4. Cseh, Á., Irving, R.W., Manlove, D.F.: The stable roommates problem with short lists. Theory Comput. Syst. 63(1), 128–149 (2017). https://doi.org/10.1007/s00224-017-9810-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Cseha, A., Manlove, D.F.: Stable marriage and roommates problems with restricted edges: complexity and approximability. Discrete Optimizat. 20(1), 62–89 (2016)

    Article  MathSciNet  Google Scholar 

  6. Diebold, F., Bichler, M.: Matching with indifferences: a comparison of algorithms in the context of course allocation. Eur. J. Oper. Res. 260(1), 268–282 (2017)

    Article  MathSciNet  Google Scholar 

  7. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 9(1), 9–15 (1962)

    Article  MathSciNet  Google Scholar 

  8. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Local search for stable marriage problems with ties and incomplete lists. In: Zhang, B.-T., Orgun, M.A. (eds.) PRICAI 2010. LNCS (LNAI), vol. 6230, pp. 64–75. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15246-7_9

    Chapter  Google Scholar 

  9. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Local search approaches in stable matching problems. Algorithms 6(4), 591–617 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gent, I.P., Prosser, P.: An empirical study of the stable marriage problem with ties and incomplete lists. In: Proceedings of the 15th European Conference on Artificial Intelligence, pp. 141–145. Lyon, France, July 2002

    Google Scholar 

  11. Irving, R.W., Manlove, D.F.: Finding large stable matchings. J. Experiment. Algorithmics 14(2), 1.2–1.2:30 (2009)

    Google Scholar 

  12. Irving, R.W., Manlove, D.F., O’Malley, G.: Stable marriage with ties and bounded length preference lists. J. Discret. Algorithms 7(1), 213–219 (2009)

    Article  MathSciNet  Google Scholar 

  13. Iwama, K., Miyazaki, S., Morita, Y., Manlove, D.: Stable marriage with incomplete lists and ties. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_41

    Chapter  MATH  Google Scholar 

  14. Király, Z.: Linear time local approximation algorithm for maximum stable marriage. Algorithms 6(1), 471–484 (2013)

    Article  MathSciNet  Google Scholar 

  15. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theoret. Comput. Sci. 276(1–2), 261–279 (2002)

    Article  MathSciNet  Google Scholar 

  16. McDermid, E.: A 3/2-approximation algorithm for general stable marriage. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 689–700. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-1_57

    Chapter  Google Scholar 

  17. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: A local search algorithm for SMTI and its extension to HRT problems. In: Proceedings of the 3rd International Workshop on Matching Under Preferences, pp. 66–77. Glasgow, United Kingdom, April 2015

    Google Scholar 

  18. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: Solving hard stable matching problems via local search and cooperative parallelization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 1212–1218. Austin, Texas, January 2015

    Google Scholar 

  19. Paluch, K.: Faster and simpler approximation of stable matchings. In: Proceedings of the 9th International Workshop on Approximation and Online Algorithms, pp. 176–187. Saarbrucken, Germany, September 2011

    Google Scholar 

  20. Paluch, K.: Faster and simpler approximation of stable matchings. Algorithms 7(2), 189–202 (2014)

    Article  MathSciNet  Google Scholar 

  21. Viet, H.H., Uyen, N.T., Lee, S.G., Chung, T.C., Trang, L.H.: A max-conflicts based heuristic search for the stable marriage problem with ties and incomplete lists. J. Heuristics 27(3), 439–458 (2021). https://doi.org/10.1007/s10732-020-09464-8

    Article  Google Scholar 

Download references

Acknowledgment

This research is funded by the Basic Science Research Program through the National Research Foundation of Korea under grant number NRF-2020R1F1A1050014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TaeChoong Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Viet, H.H., Uyen, N.T., Cao, S.T., Chung, T. (2022). A Heuristic Repair Algorithm for the Maximum Stable Marriage Problem with Ties and Incomplete Lists. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics