Skip to main content

Analyzing CNN Models’ Sensitivity to the Ordering of Non-natural Data

  • Conference paper
  • First Online:
  • 670 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1549))

Abstract

Convolutional Neural Networks (CNN) have revolutionized image recognition technology, and has found uses in various non-image related fields. When dealing with non-natural data, where the ordering of various parts of a data sample is not dictated by nature, it is known that a model trained on certain orderings of the data performs better than models trained on other orderings. Understanding how to best order the training data for improving CNN performance is not well-studied. In this paper, we investigate this problem by examining several different CNN models. We define a functional algorithm for ordering, show that order importance in CNNs is model dependent and that depending on the model, statistical relationships are an important tool in establishing order with better performance.

This work is partially supported by NSF grants HRD-1736209 and CNS-1553696.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdelsalem, M., Krishnan, R., Huang, Y., Sandu, R.: Malware detection in cloud infrastructure using convolutional neural networks. In: IEEE 11th International Conference on Cloud Computing (2018)

    Google Scholar 

  2. Avula, S.B., Badri, S.J., Reddy P, G.: A novel forest fire detection system using fuzzy entropy optimized thresholding and STN-based CNN. In: 2020 International Conference on COMmunication Systems NETworkS (COMSNETS), pp. 750–755 (2020). https://doi.org/10.1109/COMSNETS48256.2020.9027347

  3. Chollet, F.: Xception: Deep learning with depthwise separable convolutions (2017)

    Google Scholar 

  4. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: an overview. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8599–8603 May (2013). https://doi.org/10.1109/ICASSP.2013.6639344

  5. Elhassouny, A., Smarandache, F.: Trends in deep convolutional neural networks architectures: a review. In: 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), pp. 1–8 (2019). https://doi.org/10.1109/ICCSRE.2019.8807741

  6. Golinko, E., Sonderman, T., Zhu, X.: Learning convolutional neural networks from ordered features of generic data. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 897–900, December 2018. https://doi.org/10.1109/ICMLA.2018.00145

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 http://arxiv.org/abs/1512.03385 (2015)

  8. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: The IEEE International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  9. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications (2017)

    Google Scholar 

  10. Hu, Y., Zhang, D., Cao, G., Pan, Q.: Network data analysis and anomaly detection using CNN technique for industrial control systems security. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 593–597 (2019). https://doi.org/10.1109/SMC.2019.8913895

  11. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR abs/1608.06993 http://arxiv.org/abs/1608.06993 (2016)

  12. Jiang, W., Bruton, L.: Lossless color image compression using chromatic correlation. In: Proceedings DCC 1999 Data Compression Conference (Cat. No. PR00096), pp. 533 (1999). https://doi.org/10.1109/DCC.1999.785690

  13. Kimmel, J.C., Mcdole, A.D., Abdelsalam, M., Gupta, M., Sandhu, R.: Recurrent neural networks based online behavioural malware detection techniques for cloud infrastructure. IEEE Access 9, 68066–68080 (2021). https://doi.org/10.1109/ACCESS.2021.3077498

    Article  Google Scholar 

  14. Lee, J.Y., Dernoncourt, F.: Sequential short-text classification with recurrent and convolutional neural networks. CoRR abs/1603.03827 http://arxiv.org/abs/1603.03827 (2016)

  15. Lihao, W., Yanni, D.: A fault diagnosis method of tread production line based on convolutional neural network. In: 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), pp. 987–990, November 2018. https://doi.org/10.1109/ICSESS.2018.8663824

  16. Liu, C., Dai, L., Cui, W., Lin, T.: A byte-level CNN method to detect DNS tunnels. In: 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC), pp. 1–8 (2019). https://doi.org/10.1109/IPCCC47392.2019.8958714

  17. Liu, G., Zhao, F.: An efficient compression algorithm for hyperspectral images based on correlation coefficients adaptive three dimensional wavelet zerotree coding. In: 2007 IEEE International Conference on Image Processing, vol. 2, pp. II - 341-II - 344 (2007). https://doi.org/10.1109/ICIP.2007.4379162

  18. McDole, A., Abdelsalam, M., Gupta, M., Mittal, S.: Analyzing CNN based behavioural malware detection techniques on cloud IaaS. In: Zhang, Q., Wang, Y., Zhang, L.-J. (eds.) CLOUD 2020. LNCS, vol. 12403, pp. 64–79. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59635-4_5

    Chapter  Google Scholar 

  19. Milton-Barker, A.: Inception v3 deep convolutional architecture for classifying acute (2019). https://software.intel.com/content/www/us/en/develop/articles/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html

  20. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Nat. Acad. Sci. 115(13), E2970–E2979 (2018). https://doi.org/10.1073/pnas.1717139115, https://www.pnas.org/content/115/13/E2970

  21. Wang, Q., Shen, Y.: A jpeg2000 and nonlinear correlation measurement based method to enhance hyperspectral image compression. In: 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, vol. 3, pp. 2009–2011 (2005). https://doi.org/10.1109/IMTC.2005.1604524

  22. van Wyk, F., Wang, Y., Khojandi, A., Masoud, N.: Real-time sensor anomaly detection and identification in automated vehicles. IEEE Trans. Intell. Transp. Syst. 21(3), 1264–1276 (2020). https://doi.org/10.1109/TITS.2019.2906038

    Article  Google Scholar 

  23. Zhang, Y., Chen, X., Jin, L., Wang, X., Guo, D.: Network intrusion detection: based on deep hierarchical network and original flow data. IEEE Access 7, 37004–37016 (2019). https://doi.org/10.1109/ACCESS.2019.2905041

    Article  Google Scholar 

  24. Zhao, X., Gao, L., Chen, Z., Zhang, B., Liao, W., Yang, X.: An entropy and MRF model-based CNN for large-scale landsat image classification. IEEE Geosci. Remote Sens. Lett. 16(7), 1145–1149 (2019). https://doi.org/10.1109/LGRS.2019.2890996

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy Klepetko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klepetko, R., Krishnan, R. (2022). Analyzing CNN Models’ Sensitivity to the Ordering of Non-natural Data. In: Krishnan, R., Rao, H.R., Sahay, S.K., Samtani, S., Zhao, Z. (eds) Secure Knowledge Management In The Artificial Intelligence Era. SKM 2021. Communications in Computer and Information Science, vol 1549. Springer, Cham. https://doi.org/10.1007/978-3-030-97532-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97532-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97531-9

  • Online ISBN: 978-3-030-97532-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics