Skip to main content

Software Product Lines for Industrial Robots: A Pilot Case with Arduino

  • Conference paper
  • First Online:
Gerontechnology IV (IWoG 2021)

Abstract

Software reuse approaches in industrial robots are little exploited by industry, which often leads programmers to continue coding the same solutions, wasting time, effort, and cost. This paper describes the construction of a Software Product Line (SPL) to determine the feasibility of this approach as a reuse strategy for industrial robots. For the definition of the SPL, we followed the fundamental activities of domain engineering and application engineering. In addition, we identified its limitations and possible future work. As a result, it was got that the SPL approach is viable because a derivation of a product was made from the SPL applying some software reuse metrics, where it was found that 33% of the code needed for the operation of the robot was generated by the proposal, which represents a potential improvement in the time that developers take to program industrial robotics solutions with Arduino. In addition, it identified the potential of this approach in solutions to support the elderly in their homes and care centers, as well as some limitations related to the SPL and the domains involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, W., Goodkind, D., Kowal, P.R., et al: An aging world: 2015 (2016)

    Google Scholar 

  2. van Hoof, J., Kazak, J., Perek-Białas, J., Peek, S.: The challenges of urban ageing: making cities age-friendly in Europe. IJERPH 15(11), 2473 (2018)

    Article  Google Scholar 

  3. Li, J., Ma, Q., Chan, A.H., Man, S.: Health monitoring through wearable technologies for older adults: smart wearables acceptance model. Appl. Ergon. 75, 162–169 (2019). https://doi.org/10.1016/j.apergo.2018.10.006

    Article  Google Scholar 

  4. Thach, K.S., Lederman, R., Waycott, J.: How older adults respond to the use of virtual reality for enrichment: a systematic review. In: 32nd Australian Conference on Human-Computer Interaction, pp. 303–313. ACM, Sydney (2020)

    Google Scholar 

  5. Pagani, R., Nuzzi, C., Ghidelli, M., Borboni, A., Lancini, M., Legnani, G.: Cobot user frame calibration: evaluation and comparison between positioning repeatability performances achieved by traditional and vision-based methods. Robotics 10(1), 45 (2021)

    Article  Google Scholar 

  6. Moniz, A., Krings, B.J.: Robots working with humans or humans working with robots? searching for social dimensions in new human-robot interaction in industry. Societies 6(3), 23 (2016). https://doi.org/10.3390/soc6030023

    Article  Google Scholar 

  7. Heineck, T., Goncalves, E., Sousa, A., Oliveira, M., Castro, J.: Model-driven development in robotics domain: a systematic literature review. In: 2016 X Brazilian Symposium on Software Components. Architectures and Reuse (SBCARS), pp. 151–160. IEEE, Maringá, September 2016

    Google Scholar 

  8. Heikkila, T., Dobrowiecki, T., Dalgaard, L.: Dealing with configurability in robot systems. In: 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), pp. 1–7. IEEE, Auckland, August 2016

    Google Scholar 

  9. Siepmann, F., Ziegler, L., Kortkamp, M., Wachsmuth, S.: Deploying a modeling framework for reusable robot behavior to enable informed strategies for domestic service robots. Robot. Auton. Syst. 62(5), 619–631 (2014)

    Article  Google Scholar 

  10. Brugali, D., Siciliano, B., Khatib, O., Groen, F. (eds.): Software Engineering for Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 30. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-68951-5

    Book  MATH  Google Scholar 

  11. Gherardi, L., Brugali, D.: Modeling and reusing robotic software architectures: the HyperFlex toolchain. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6414–6420. IEEE, Hong Kong, May 2014

    Google Scholar 

  12. Solis, A., Hurtado, J.: Reutilización de software en la robótica industrial: un mapeo sistemático. Rev. Iberoamericana Autom. Inform. Ind. 17(4), 354–367 (2020)

    Article  Google Scholar 

  13. Rodas-Silva, J., Galindo, J.A., Garcia-Gutierrez, J., Benavides, D.: Selection of software product line implementation components using recommender systems: an application to wordpress. IEEE Access 7, 69226–69245 (2019)

    Article  Google Scholar 

  14. Alves-Oliveira, P., Petisca, S., Correia, F., Maia, N., Paiva, A.: Social robots for older adults: framework of activities for aging in place with robots. In: ICSR 2015. LNCS (LNAI), vol. 9388, pp. 11–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25554-5_2

    Chapter  Google Scholar 

  15. Takeda, M., Hirata, Y., Weng, Y.H., Katayama, T., Mizuta, Y., Koujina, A.: Accountable system design architecture for embodied AI: a focus on physical human support robots. Adv. Robot. 33(23), 1248–1263 (2019)

    Article  Google Scholar 

  16. Chen, P.J., Yang, S.Y., Wang, C.S., Muslikhin, M., Wang, M.S.: Development of a Chinese chess robotic system for the elderly using convolutional neural networks. Sustainability 12(10), 3980 (2020)

    Article  Google Scholar 

  17. Tanaka, H., Yoshikawa, M., Oyama, E., Wakita, Y., Matsumoto, Y.: Development of assistive robots using international classification of functioning, disability, and health: concept, applications, and issues. J. Robot. 2013, 1–12 (2013)

    Article  Google Scholar 

  18. Ansari, Y., Manti, M., Falotico, E., Cianchetti, M., Laschi, C.: Multiobjective optimization for stiffness and position control in a soft robot arm module. IEEE Robot. Autom. Lett. 3(1), 108–115 (2018)

    Article  Google Scholar 

  19. Jardón, A., Giménez, A., Correal, R., Martinez, S., Balaguers, C.: Asibot: robot portátil de asistencia a discapacitados. Concepto, arquitectura de control y evaluación clínica. Rev. Iberoamericana Autom. Inform. Ind. RIAI 5(2), 48–59 (2008)

    Article  Google Scholar 

  20. Camacho, M.C., Hurtado-Alegria, J.A., Ruiz-Melenje, P.H.: Un Método Incremental para el Análisis visual de modelos de Proceso software. Rev. Gerencia Tecnol. Inform. 15(43), 79–91 (2016)

    Google Scholar 

  21. Northrop, L., Clements, P.: A framework for software product line practice, version 5.0. Technical report, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pensilvania (2012)

    Google Scholar 

  22. El-Sharkawy, S., Yamagishi-Eichler, N., Schmid, K.: Metrics for analyzing variability and its implementation in software product lines: a systematic literature review. Inf. Softw. Technol. 106, 1–30 (2019)

    Article  Google Scholar 

  23. Bashroush, R., Garba, M., Rabiser, R., Groher, I., Botterweck, G.: CASE tool support for variability management in software product lines. ACM Comput. Surv. 50(1), 1–45 (2017)

    Article  Google Scholar 

  24. Dunbar, N.: Arduino Software Internals: A Complete Guide to How Your Arduino Language and Hardware Work Together. Arduino Software Internals (2020)

    Google Scholar 

  25. Vaut, L., Scarano, E., Tosello, G., Boisen, A.: Fully replicable and automated retention measurement setup for characterization of bio-adhesion. HardwareX 6, e00071 (2019)

    Article  Google Scholar 

  26. Berger, T., Steghöfer, J.-P., Ziadi, T., Robin, J., Martinez, J.: The state of adoption and the challenges of systematic variability management in industry. Empir. Softw. Eng. 25(3), 1755–1797 (2020). https://doi.org/10.1007/s10664-019-09787-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Felipe Solis Pino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Solis Pino, A.F., García Alonso, J., Moguel, E., Vicente-Chicote, C., Hurtado Alegria, J.A., Ruiz, P.H. (2022). Software Product Lines for Industrial Robots: A Pilot Case with Arduino. In: García-Alonso, J., Fonseca, C. (eds) Gerontechnology IV. IWoG 2021. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-97524-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97524-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97523-4

  • Online ISBN: 978-3-030-97524-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics