Skip to main content

Raman Dissipative Solitons

  • Chapter
  • First Online:
Dissipative Optical Solitons

Abstract

In this chapter, we give an overview of high-energy dissipative solitons generation via Raman gain. Such pulses have been proven to be a new kind of solitons—Raman dissipative soliton (RDS). Two basic configurations of the laser cavity with intra- and extra-cavity formation of the RDS are presented and the properties specific to each of them are discussed. Intra-cavity configuration provides a mutual coherence between the Raman and pump pulses generated in common cavity. Their mixing in a highly-nonlinear fiber results in cascaded generation of clones of the input DSs, forming a comb of highly chirped pulses in the spectral domain. Extra-cavity configuration gives more freedom in Raman cavity design, as net cavity dispersion together with the external pump pulse energy, duration and spectral width can be adjusted independently. As a result, it becomes possible to generate intensive laser radiation beyond the emission spectrum of typical active media, namely around 1.3 μm region, by using phosphosilicate fibers with the large Stokes shift. Thus, RDSs generation undoubtedly reveals new possibilities for numerous applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ph. Grelu and N. N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics, 6(2):84–92, 2012.

    Article  ADS  Google Scholar 

  2. W. H. Renninger and F. W. Wise. Dissipative soliton fiber laser. In O. G. Okhotnikov, editor, Fiber Lasers, pages 97–134. Wiley, 2012.

    Google Scholar 

  3. S. Lefrançois, T. S. Sosnowski, C.-H. Liu, A. Galvanauskas, and F. W. Wise. Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber. Opt. Express, 19(4):3464–3470, 2011.

    Article  ADS  Google Scholar 

  4. D. S. Kharenko, V. A. Gonta, and S. A. Babin. 50 nJ 250 fs all-fibre Raman-free dissipative soliton oscillator. Laser Phys. Lett., 13(2):025107, 2016.

    Google Scholar 

  5. M Tang, H Wang, R Becheker, J.-L. Oudar, D. A. Gaponov, T. Godin, and A Hideur. High-energy dissipative solitons generation from a large normal dispersion Er-fiber laser. Opt. Lett., 40(7):1414–1417, 2015.

    Google Scholar 

  6. D. S. Kharenko, I. S. Zhdanov, A. E. Bednyakova, E. V. Podivilov, M. P. Fedoruk, A. Apolonski, S. K. Turitsyn, and S. A. Babin. All-fiber highly chirped dissipative soliton generation in the telecom range. Opt. Lett., 42(16):3221–3224, 2017.

    Article  ADS  Google Scholar 

  7. K. Smith, P. N. Kean, D. W. Crust, and W. Sibbett. An experimental study of a synchronously pumped fibre raman oscillator. J. Mod. Opt., 34(9):1227–1233, 1987.

    Article  ADS  Google Scholar 

  8. P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. Reid. Experimental evaluation of a fibre raman oscillator having fibre grating reflectors. J. Mod. Opt., 35(3):397–406, 1988.

    Article  ADS  Google Scholar 

  9. A. S. Kurkov, V. V. Dvoyrin, V. M. Paramonov, O. I. Medvedkov, and E. M. Dianov. All-fiber pulsed Raman source based on Yb:Bi fiber laser. Laser Phys. Lett., 4(6):449–451, 2007.

    Article  ADS  Google Scholar 

  10. Dejiao Lin, Shaif-ul Alam, Peh Siong Teh, Kang Kang Chen, and David J Richardson. Tunable synchronously-pumped fiber Raman laser in the visible and near-infrared exploiting MOPA-generated rectangular pump pulses. Opt. Lett., 36(11):2050–2, 2011.

    Google Scholar 

  11. He Chen, Sheng-Ping Chen, Zong-Fu Jiang, Ke Yin, and Jing Hou. All-fiberized synchronously pumped 1120 nm picosecond Raman laser with flexible output dynamics. Opt. Express, 23(18):24088, 2015.

    Google Scholar 

  12. Evgeny M. Dianov and Alexander M. Prokhorov. Medium-power CW Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron., 6(6):1022–1028, 2000.

    Article  ADS  Google Scholar 

  13. Yan Feng, Luke R. Taylor, and Domenico Bonaccini Calia. 150 W highly-efficient Raman fiber laser. Opt. Express, 17(26):23678, 2009.

    Google Scholar 

  14. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, Juan Diego Ania-Castañón, V. Karalekas, and E. V. Podivilov. Random distributed feedback fibre laser. Nat. Photonics, 4(4):231–235, 2010.

    Google Scholar 

  15. E. A. Zlobina, S. I. Kablukov, A. A. Wolf, A. V. Dostovalov, and S. A. Babin. Nearly single-mode Raman lasing at 954 nm in a graded-index fiber directly pumped by a multimode laser diode. Opt. Lett., 42(1):9, 2017.

    Google Scholar 

  16. S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. A. Apolonski. Multicolour nonlinearly bound chirped dissipative solitons. Nat. Commun., 5:4653, 2014.

    Article  ADS  Google Scholar 

  17. D. Churin, J. Olson, R. A. Norwood, N. Peyghambarian, and K. Kieu. High-power synchronously pumped femtosecond Raman fiber laser. Opt. Lett., 40(11):2529, 2015.

    Google Scholar 

  18. Denis S. Kharenko, Vlad D. Efremov, Ekaterina A. Evmenova, and Sergey A. Babin. Generation of Raman dissipative solitons near 1.3 microns in a phosphosilicate-fiber cavity. Opt. Express, 26(12):15084, 2018.

    Google Scholar 

  19. Orkhongua Batjargal, Yi-Hsin Ou, Kelli Keikens, Jennifer K. Barton, and Khanh Kieu. All-Fiber Dissipative Soliton Raman Laser Based on Phosphosilicate Fiber. IEEE Photonics Technol. Lett., 30(21):1846–1849, 2018.

    Article  ADS  Google Scholar 

  20. Claude Aguergaray, David Méchin, Vladimir Kruglov, and John D Harvey. Experimental realization of a mode-locked parabolic Raman fiber oscillator. Opt. Express, 18(8):8680–8687, 2010.

    Google Scholar 

  21. Denis S. Kharenko, Anastasia E. Bednyakova, Evgeniy V. Podivilov, Mikhail P. Fedoruk, Alexander Apolonski, and Sergey A. Babin. Cascaded generation of coherent Raman dissipative solitons. Opt. Lett., 41(1):175, 2016.

    Google Scholar 

  22. C. J. S. de Matos, S. V. Popov, and J. R. Taylor. Short-pulse, all-fiber, Raman laser with dispersion compensation in a holey fiber. Opt. Lett., 28(20):1891–1893, 2003.

    Article  ADS  Google Scholar 

  23. Denis S. Kharenko, Anastasia E. Bednyakova, Evgeniy V. Podivilov, Mikhail P. Fedoruk, Alexander Apolonski, and Sergey A. Babin. Feedback-controlled Raman dissipative solitons in a fiber laser. Opt. Express, 23(2):1857, 2015.

    Google Scholar 

  24. Evgeniy V. Podivilov, Denis S. Kharenko, Anastasia E. Bednyakova, Mikhail P. Fedoruk, and Sergey A. Babin. Spectral comb of highly chirped pulses generated via cascaded FWM of two frequency-shifted dissipative solitons. Sci. Rep., 7(1):2905, 2017.

    Google Scholar 

  25. FORC-Photonics. Phosphorus doped fiber PDF-5/125. http://www.forc-photonics.ru/en/fibers_and_cables/P_doped_fibers/1/114

  26. Dawn Hollenbeck and Cyrus D. Cantrell. Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function. J. Opt. Soc. Am. B, 19(12):2886–2892, 2002.

    Article  ADS  Google Scholar 

  27. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus. Raman response function of silica-core fibers. J. Opt. Soc. Am. B, 6(6):1159–1166, 1989.

    Article  ADS  Google Scholar 

  28. Guillermo Salceda-Delgado, Alejandro Martinez-Rios, Boaz Ilan, and David Monzon-Hernandez. Raman response function and Raman fraction of phosphosilicate fibers. Opt. Quantum Electron., 44(14):657–671, 2012.

    Article  Google Scholar 

  29. Sergey Smirnov. Efficient numerical model of stimulated Raman scattering in optical fibers. J. Opt. Soc. Am. B, 37(4):1219, 2020.

    Google Scholar 

  30. A. Chong, W. H. Renninger, and F. W. Wise. Properties of normal-dispersion femtosecond fiber lasers. J. Opt. Soc. Am. B, 25(2):140–148, 2008.

    Article  ADS  Google Scholar 

  31. D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin. Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic-quintic Ginzburg-Landau equation. J. Opt. Soc. Am. B, 28(10):2314–2319, 2011.

    Article  ADS  Google Scholar 

  32. A. Kokhanovskiy, S. Smirnov, and S. Kobtsev. Raman converter of noisy double-scale pulses into coherent pulses. J. Opt. Soc. Am. B, 37(8):2523, 2020.

    Google Scholar 

  33. Ekaterina A. Zlobina, Denis S. Kharenko, Sergey I. Kablukov, and Sergey A. Babin. Four wave mixing of conventional and Raman dissipative solitons from single fiber laser. Opt. Express, 23(13):16589, 2015.

    Google Scholar 

  34. C. Xu and F. W. Wise. Recent advances in fiber lasers for nonlinear microscopy. Nat. Photonics, 7(11):875–882, 2013.

    Article  ADS  Google Scholar 

  35. Stuart D. Jackson. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics, 6(7):423–431, 2012.

    Article  ADS  Google Scholar 

  36. Maxim Karpov, Hairun Guo, Arne Kordts, Victor Brasch, Martin H. P. Pfeiffer, Michail Zervas, Michael Geiselmann, and Tobias J. Kippenberg. Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator. Phys. Rev. Lett., 116(10):103902, 2016.

    Google Scholar 

  37. Tobias Hansson, Daniele Modotto, and S. Wabnitz. Mid-infrared soliton and Raman frequency comb generation in silicon microrings. Opt. Lett., 39(23):6747, 2014.

    Google Scholar 

  38. Qi-Fan Yang, Xu Yi, Ki Youl Yang, and Kerry Vahala. Stokes solitons in optical microcavities. Nat. Phys., 1(September):1–6, 2016.

    Google Scholar 

  39. Lars Rishoj, Gautam Prabhakar, Jeffrey Demas, and Siddharth Ramachandran. 30 nJ, ˜50 fs All-Fiber Source at 1300 nm Using Soliton Shifting in LMA HOM Fiber. In Conf. Lasers Electro-Optics, number c, page STh3O.3, Washington, D.C., 2016. OSA.

    Google Scholar 

  40. D. S. Kharenko, V. D. Efremov, and S. A. Babin. Study on harmonic generation regimes of Raman dissipative solitons in an external fibre cavity in a spectral region of 1.3 μm. Quantum Electron., 49(7):657–660, 2019.

    Google Scholar 

  41. A. E. Bednyakova, D. S. Kharenko, Innokentiy Zhdanov, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin. Raman dissipative solitons generator near 1.3 mkm: limiting factors and further perspectives. Opt. Express, 28(15):22179, 2020.

    Google Scholar 

  42. L. Rishøj, B. Tai, P. Kristensen, and S. Ramachandran. Soliton self-mode conversion: revisiting Raman scattering of ultrashort pulses. Optica, 6(3):304, 2019.

    Google Scholar 

  43. I. Zhdanov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, and S. A. Babin. All-fiber pulsed laser source based on Raman dissipative soliton generation for biological tissue analysis. In Ultrafast Nonlinear Imaging Spectrosc. VIII, volume 11497, page 1149717. SPIE, 2020.

    Google Scholar 

  44. A M Khegai, F V Afanas’ev, K E Riumkin, S V Firstov, V F Khopin, D V Myasnikov, M A Mel’kumov, and E M Dianov. Picosecond 1.3-μm bismuth fibre laser mode-locked by a nonlinear loop mirror. Quantum Electron., 46(12):1077–1081, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis S. Kharenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharenko, D.S. et al. (2022). Raman Dissipative Solitons. In: Ferreira, M.F.S. (eds) Dissipative Optical Solitons. Springer Series in Optical Sciences, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-97493-0_8

Download citation

Publish with us

Policies and ethics