Skip to main content

Dissipative Rogue Waves

  • Chapter
  • First Online:
Dissipative Optical Solitons

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 238))

  • 810 Accesses

Abstract

In this chapter, the history and main characteristics of rogue waves in the oceans are introduced. Due to phenomenological and physical analogies between extreme events in optics and hydrodynamics, the concept of optical rogue waves is extended into optics, associated with a long-tailed intensity histogram in the long-wavelength range of fiber optical supercontinuum spectra. Then, we discuss the real-time techniques for observing optical rogue waves. Namely, the well-known dispersive-Fourier-transform-based ultrafast spectroscopy and the time magnifier based on space-time duality. Further, the optical rogue waves in dissipative systems that often referred as open systems far away from the thermodynamic equilibrium, are reviewed briefly, including ultrafast lasers, microresonators, extended systems, and optical polarization rogue waves. These dissipative optical systems can be described by the Ginzburg-Landau equations, and various dynamical processes of fluctuation, pulsing, bifurcation, turbulence, and chaos are expected to be observed. Finally, two possible interpretations, and the predictabilities of dissipative rogue waves are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Kharif, E. Pelinovsky. Physical mechanisms of the rogue wave phenomenon. European Journal of Mechanics, B/Fluids, 2003, 22(6):603–634.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. B. White, B. Fornberg. On the chance of freak waves at sea. Journal of Fluid Mechanics, 1998, 355:113–138.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. N. Akhmediev, E. Pelinovsky. Discussion & debate: Rogue waves – towards a unifying concept?. European Physical Journal – Special Topics, 2010, 185(1):1–266.

    Article  ADS  Google Scholar 

  4. M. Onorato, A. Osborne, M. Serio, and S. Bertone. Freak waves in random oceanic sea states. Phys. Rev. Lett. 2001, 86(25):5831–5834.

    Article  ADS  Google Scholar 

  5. J.S.-C.N. Akhmediev, A. Ankiewicz. Extreme waves that appear from nowhere: On the nature of rogue waves. Physics Letters A, 2009, 373(25):2137–2145.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Dyachenko, V. Zakharov. On the formation of freak waves on the surface of deep water. Jetp Letters, 2008, 88(5):307–311.

    Article  ADS  Google Scholar 

  7. K. B. Dysthe, H. E. Krogstad, H. Socquet-Juglard, K. Trulsen. Freak waves, rogue waves, extreme waves and ocean wave climate. 2005. http://www.math.uio.no/∼karstent/waves/indexen.html.

  8. https://photolib.noaa.gov/Collections/National-Weather-Service/Meteorological-Monsters/Surfs-Up/emodule/634/eitem/3318.

  9. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi. Rogue waves and their generating mechanisms in different physical contexts. Physics Reports, 2013, 528(2):47–89.

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Fochesato, S. Grilli, F. Dias. Numerical modeling of extreme rogue waves generated by directional energy focusing. Wave Motion, 2007, 44(5):395–416.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Clauss. Dramas of the sea: episodic waves and their impact on offshore structures. APPLIED OCEAN RESEARCH, 2002, 24(3):147–161.

    Article  Google Scholar 

  12. M. Brown, A. Jensen. Experiments on focusing unidirectional water waves. Journal of Geophysical Research, 2001, 106(C8):16917.

    Article  ADS  Google Scholar 

  13. S. Birkholz, E. T. J. Nibbering, C. Brée, S. Skupin, A.Demircan, G. Genty, and G. Steinmeyer. Spatiotemporal Rogue Events in Optical Multiple Filamentation. Physical Review Letters, 2013, 111(24):243903.

    Article  ADS  Google Scholar 

  14. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali. Optical rogue waves. Nature, 2007, 450(7172):1054.

    Article  ADS  Google Scholar 

  15. J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty. Instabilities, breathers and rogue waves in optics. Nature Photonics, 2014, 8(10):755–764.

    Article  ADS  Google Scholar 

  16. C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev. Dissipative Rogue Waves Generated by Chaotic Pulse Bunching in a Mode-Locked Laser. Physical Review Letters, 2012, 108(23):233901.

    Article  ADS  Google Scholar 

  17. Z. Liu, S. Zhang, and F. W. Wise. Rogue waves in a normal-dispersion fiber laser. Optics Letters, 2015, 40(7):1366.

    Article  ADS  Google Scholar 

  18. J.-P. Eckmann. Roads to turbulence in dissipative dynamical systems. Reviews of Modern Physics, 1981, 53(4):643–654.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. N. Akhmediev, J. M. Dudley, D. R. Solli, and S. K. Turitsyn. Recent progress in investigating optical rogue waves. Journal of Optics, 2013, 15(6):060201.

    Article  ADS  Google Scholar 

  20. M. Erkintalo, G. Genty, and J. M. Dudley. On the statistical interpretation of optical rogue waves. European Physical Journal Special Topics, 2010, 185(1):135–144.

    Article  ADS  Google Scholar 

  21. A. Zaviyalov, O. Egorov, R. Iliew, and F. Lederer. Rogue waves in mode-locked fiber lasers. Phys. Rev. A, 2012, 85:013828.

    Article  ADS  Google Scholar 

  22. P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, and S. Bielawski. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nature Communications, 2016, 7:13136.

    Article  ADS  Google Scholar 

  23. M. Närhi, B. Wetzel, C. Billet, S. Toenger, T. Sylvestre, J. Merolla, R. Morandotti, F. Dias, G. Genty, and J. M. Dudley. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nature Communications, 2016, 7:13675.

    Article  ADS  Google Scholar 

  24. J. M. Dudley, G. Genty, and B. J. Eggleton. Harnessing and control of optical rogue waves in supercontinuum generation. Optics Express, 2008, 16(6):3644–51.

    Article  ADS  Google Scholar 

  25. F. T. Arecchi, U. Bortolozzo, A. Montina, and S. Residori. Granularity and inhomogeneity are the joint generators of optical rogue waves. Physical Review Letters, 2011, 106(15):153901.

    Article  ADS  Google Scholar 

  26. B. Frisquet, B. Kibler, P. Morin, F. Baronio, M. Conforti, G. Millot, and S. Wabnitz. Optical Dark Rogue Wave. Sci Rep, 2016, 6(1):20785.

    Google Scholar 

  27. D. R. Solli, C. Ropers, and B. Jalali. Rare frustration of optical supercontinuum generation. Applied Physics Letters, 2010, 96(15):151108.

    Article  ADS  Google Scholar 

  28. A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn and B. Jalali. Time Stretch and its applications. Nature Photonics, 2017, 11:341.

    Article  ADS  Google Scholar 

  29. G. Herink, B. Jalali, C. Ropers, D.R. Solli. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photon, 2016, 10:321–326.

    Article  ADS  Google Scholar 

  30. R. Salem, M. A. Foster, and A. L. Gaeta. Application of space–time duality to ultrahigh-speed optical signal processing. Adv. Opt. Photonics, 2013, 5(3):274–317.

    Article  ADS  Google Scholar 

  31. K. Goda and B. Jalali. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photon, 2013, 7:102–112.

    Article  ADS  Google Scholar 

  32. Y. Li, Y. Cao, L. Gao, L. Huang, H. Han, I. P. Ikechukwu, and T. Zhu. Fast Spectral Characterization of Optical Passive Devices Based on Dissipative Soliton Fiber Laser Assisted Dispersive Fourier Transform. Physical Review Applied, 2020, 14:024074.

    Article  ADS  Google Scholar 

  33. B. H. Kolner. Space-time duality and the theory of temporal imaging. IEEE J. Quantum Electron, 1994, 30(8):1951–1963.

    Article  ADS  Google Scholar 

  34. Y Wei, B Li, P Feng, J Kang, K.K.Y. Wong. Broadband dynamic spectrum characterization based on gating-assisted electro-optic time lens. Applied Physics Letters, 2019, 114(2):021105.

    Article  ADS  Google Scholar 

  35. B. Li, S. Huang, Y. Li, C. W. Wong and K. K. Y. Wong. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nature Communications, 2017, 8:61.

    Article  ADS  Google Scholar 

  36. B. Li, J. Kang, S. Wang, Y. Yu, P. Feng, K. K. Y Wong. Unveiling femtosecond rogue-wave structures in noise-like pulses by a stable and synchronized time magnifier. Optics Letters, 2019, 44(17):4351–4354.

    Article  ADS  Google Scholar 

  37. A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer. Dissipative soliton molecules with independently evolving or flipping phases in mode- locked fiber lasers. Phys. Rev. A, 2009, 80:043829.

    Article  ADS  Google Scholar 

  38. S. Chouli and P. Grelu. Rains of solitons in a fiber laser. Opt. Express, 2009, 17: 11776–11781.

    Article  ADS  Google Scholar 

  39. Y. Cao, L. Gao, Y. Li, H. Ran, L. Kong, Q. Wu, L. Gang, W. Huang and T. Zhu. Polarization-dependent pulse dynamics of mode-locked fiber laser with near-zero net dispersion. Applied Physics Express, 2019, 12:112001.

    Article  ADS  Google Scholar 

  40. A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo. Observation of soliton explosions in a passively mode-locked fiber laser. Optica, 2015, 2:36.

    Article  ADS  Google Scholar 

  41. H. Chen, et al. Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion. Optics Express, 2018, 26(3):2972–2982.

    Article  ADS  Google Scholar 

  42. L. Meng, et al. Dissipative rogue waves induced by soliton explosions in an ultrafast fiber laser. Optics letters, 2016, 41(17):3912–3915.

    Article  ADS  Google Scholar 

  43. K. Krupa, K. Nithyanandan and P. Grelu. Vector dynamics of incoherent dissipative optical solitons. Optica, 2017, 4(10):1239–1244.

    Article  ADS  Google Scholar 

  44. J. Peng, and H. Zeng. Experimental observations of breathing dissipative soliton explosions. Physical Review Applied, 2019, 12(3):034052.

    Article  ADS  Google Scholar 

  45. J. Peng, and H. Zeng. Dynamics of soliton molecules in a normal-dispersion fiber laser. Optics Letters, 2019, 44(11):2899–2902.

    Article  ADS  Google Scholar 

  46. A. Coillet, J. Dudley, G. Genty, L. Larger, Y. K. Chembo. Optical rogue waves in whispering-gallery-mode resonators. Physical Review A, 2014, 89(1).

    Google Scholar 

  47. G. R. Kol. Controllable rogue waves in lugiato–lefever equation with higher-order nonlinearities and varying coefficients. Optical & Quantum Electronics, 2016, 48(9):419.

    Article  ADS  Google Scholar 

  48. S. Coulibaly, M. Taki, A. Bendahmane, G. Millot, B. Kibler, M. G. Clerc. Turbulence-induced rogue waves in kerr resonators. Physical Review X, 2019, 9(1).

    Google Scholar 

  49. G.R. Kol, S.T. Kingni, P. Woafo. Rogue waves in Lugiato-Lefever equation with variable coefficients. Centr. Eur. J. Phys, 2014, 12, 767–772.

    ADS  Google Scholar 

  50. A. K. Vinod, W. Wang, S. W. Huang, J. Yang, B. Li, C. W. Wong. Persistence of extreme events in microresonators. CLEO, 2020.

    Google Scholar 

  51. A. Montina, U. Bortolozzo, S. Residori, F.T. Arecchi. Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. Physical Review Letters, 2009, 103 (17):173901.

    Article  ADS  Google Scholar 

  52. U. Bortolozzo, A. Montina, F.T. Arecchi, J.P. Huignard, S. Residori. Spatiotemporal pulses in a liquid crystal optical oscillator. Physical Review Letters, 2007, 99 (2):3–6.

    Article  Google Scholar 

  53. A. Montina, U. Bortolozzo, S. Residori, J. P. Huignard, F.T. Arecchi. Complex dynamics of a unidirectional optical oscillator based on a liquid-crystal gain medium. Physical Review A, 2007, 76(3):399–406.

    Article  Google Scholar 

  54. R. Höhmann, U. Kuhl, H.-J. Stöckmann, L. Kaplan, E.J. Heller. Freak waves in the linear regime: a microwave study. Physical Review Letters, 2010, 104 (9):093901.

    Article  ADS  Google Scholar 

  55. S. A. Kolpakov, H. Kbashi, and S. V. Sergeyev. Dynamics of vector rogue waves in a fiber laser with a ring cavity. Optica, 2016, 3 (8):870–875.

    Article  ADS  Google Scholar 

  56. V. Kalashnikov, S. V. Sergeyev, G. Jacobsen, S. Popov, S. K. Turitsyn. Multi-scale polarisation phenomena. Light: Science & Applications, 2016, 5(1):e16011.

    Article  ADS  Google Scholar 

  57. L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang. Coherence loss of partially mode-locked fiber laser. Sci. Rep, 2016, 6:24995.

    Article  ADS  Google Scholar 

  58. L. Gao, T. Zhu, S. Wabnitz, Y. Li, X. S. Tang, and Y. L. Cao. Optical puff mediated laminar-turbulent polarization transition. Optics Express, 2018, 26(5):6103–6113.

    Article  ADS  Google Scholar 

  59. L. Gao, Y. Cao, S. Wabnitz, H. Ran, L. Kong, Y. Li, W. Huang, L. Huang, D. Feng, and T. Zhu. Polarization evolution dynamics of dissipative soliton fiber lasers. Photonics Research, 2019, 7(11): 1331–1339.

    Article  Google Scholar 

  60. L. Gao, L. Kong, Y. Cao, S. Wabnizt, H. Ran, Y. Li, W. Huang, L. Huang, M. Liu, and T. Zhu. Optical polarization rogue waves from supercontinuum generation in zero dispersion fiber pumped by dissipative soliton. Optics Express, 2019, 27(19): 23830–23838.

    Article  ADS  Google Scholar 

  61. A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides. Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Physics Reports, 2014, 542(1):1–132.

    Article  ADS  MathSciNet  Google Scholar 

  62. S. Birkholz, C. Brée, A. Demircan, and G. Steinmeyer. Predictability of rogue events. Physical Review Letters, 2015, 114(21):213901.

    Article  ADS  Google Scholar 

  63. M.-R. Alam. Predictability Horizon of Oceanic Rogue Waves. Geophysical Research Letters, 2014, 41(23):8477–8485.

    Article  ADS  Google Scholar 

  64. N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, and J. M. Dudley. Rogue wave early warning through spectral measurements?. Physics Letters A, 2011, 375(3):541–544.

    Article  ADS  MATH  Google Scholar 

  65. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley. The Peregrine soliton in nonlinear fibre optics. Nature Physics, 2010, 6(10):790–795.

    Article  ADS  Google Scholar 

  66. K. B. Dysthe, K. Trulsen. Note on Breather Type Solutions of the NLS as Models for Freak-Waves. Physica Scripta, 1999, T82(1):48.

    Article  ADS  Google Scholar 

  67. N. Akhmediev, A. Ankiewicz. Solitons: Non-linear Pulses and Beams (Chapman & Hall, 1997).

    MATH  Google Scholar 

  68. K. Tai, A. Hasegawa, and A. Tomita. Observation of modulational instability in optical fibers. Physical Review Letters, 1986, 56(2):135–138.

    Article  ADS  Google Scholar 

  69. J. M. Dudley, G. Genty, and S. Coen. Supercontinuum generation in photonic crystal fiber. REVIEWS OF MODERN PHYSICS, 2006, 78(4):1135–1184.

    Article  ADS  Google Scholar 

  70. D. R. Solli, G. Herink, B. Jalali, and C. Ropers. Fluctuations and correlations in modulation instability. Nature Photonics, 2012, 6(7):463–468.

    Article  ADS  Google Scholar 

  71. M. Mitchell, Z. Chen, M. Shih, M. Segev. Self-Trapping of Partially Spatially Incoherent Light. Physical Review Letters, 1996, 77(3):490–493.

    Article  ADS  Google Scholar 

  72. Z. Chen, M. Mitchell, M. Segev, T.H. Coskun, D.N. Christodoulides. Self-Trapping of Dark Incoherent Light Beams. Science, 1998, 280(5365):889–892.

    Article  ADS  Google Scholar 

  73. M. Soljacic, M. Segev, T. Coskun, D. Christodoulides, A. Vishwanath. Modulation Instability of Incoherent Beams in Noninstantaneous Nonlinear Media. Physical Review Letters, 2000, 84(3):467–470.

    Article  ADS  Google Scholar 

  74. D. Kip, M. Soljacic, M. Segev, E. Eugenieva, D. Christodoulides. Modulation Instability and Pattern Formation in Spatially Incoherent Light Beams. Science, 2000, 290(5491):495–498.

    Article  ADS  Google Scholar 

  75. A. Picozzi, M. Haelterman, S. Pitois, G. Millot. Incoherent Solitons in Instantaneous Response Nonlinear Media. Physical Review Letters, 2004, 92(14):143906.

    Article  ADS  Google Scholar 

  76. B. Kibler, C. Michel, A. Kudlinski, B. Barviau, G. Millot, A. Picozzi. Emergence of spectral incoherent solitons through supercontinuum generation in photonic crystal fibers. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2011, 84(2):066605.

    Article  Google Scholar 

  77. K. Hammani, B. Kibler, C. Finot, and A. Piozzi. Emergence of rogue waves from optical turbulence. Physics Letters A, 2010, 374(34):3585–3589.

    Article  ADS  MATH  Google Scholar 

  78. W. P. Zhong, M. Belic, and Y. Zhang. Second-order rogue wave breathers in the nonlinear Schrodinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient. Optics Express, 2015, 23:3708.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, L. (2022). Dissipative Rogue Waves. In: Ferreira, M.F.S. (eds) Dissipative Optical Solitons. Springer Series in Optical Sciences, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-97493-0_16

Download citation

Publish with us

Policies and ethics