Skip to main content

Multiplexed Dissipative Soliton Fiber Lasers

  • Chapter
  • First Online:
Dissipative Optical Solitons

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 238))

  • 830 Accesses

Abstract

In this chapter, the multiplexed dissipative soliton fiber lasers including bidirectional multiplexing, wavelength multiplexing, polarization multiplexing are discussed. In bidirectional multiplexed soliton lasers, the features of various saturable absorbers are introduced. For wavelength multiplexed ones, balancing the gain competition by filter, attenuation or other methods is essential. Additionally, the polarization multiplexed ones are often used as the light sources for dual-comb spectroscopy. Finally, we discussed the emerging multiplexed methods such as mode multiplexing and orbital angular momentum multiplexing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Buholz, and M. Chodorow, “Acoustic wave amplitude modulation of a multimode ring laser,” IEEE Journal of Quantum Electronics 3, 454-459 (1967).

    Article  ADS  Google Scholar 

  2. K. Kieu, and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser”, Optics Letters 33, 64-66 (2008).

    Article  ADS  Google Scholar 

  3. C. Ouyang, P. Shum, K. Wu, J. Wong, H. Lam, and S. Aditya, “Bidirectional passively mode-locked soliton fiber laser with a four-port circulator,” Optics Letter 36, 2089-2091 (2011).

    Article  ADS  Google Scholar 

  4. C. Zeng, X. M. Liu, and L. Yun, “Bidirectional fiber soliton laser mode-locked by single-wall carbon nanotubes,” Optics Express 21, 18937-18942 (2013).

    Article  ADS  Google Scholar 

  5. X. K. Yao, “Generation of bidirectional stretched pulses in a nanotube-mode-locked fiber laser,” Applied Optics 53, 27-31 (2014).

    Article  ADS  Google Scholar 

  6. H. B. Jiang, Y. Wang, S. Y. Set, and S. J. Yamashita, “Bidirectional mode-locked soliton fiber laser in 2μm using CNT saturable absorber,” Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper JM5A.21.

    Google Scholar 

  7. H. Afkhamiardakani, and J. C. Diels, “Controlling group and phase velocities in bidirectional mode-locked fiber lasers,” Optics Letters 44, 2903-2906 (2019).

    Article  ADS  Google Scholar 

  8. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Applied physics Letters 108, 231104 (2016).

    Article  ADS  Google Scholar 

  9. J. Olson, Y. H. Ou, A. Azarm, and K. Kieu, “Bi-directional mode-locked thulium fiber laser as a single-cavity dual-comb source,” IEEE Photonics Technology Letters 30, 1772-1775 (2018).

    Article  ADS  Google Scholar 

  10. R. D. Baker, N. T. Yardimci, Y. H. Ou, K. Kieu and M. Jarrahi, “Self-triggered asynchronous optical sampling terahertz spectroscopy using a bidirectional mode-locked fiber Laser,” Scientific Reports 8, 14802 (2018).

    Article  ADS  Google Scholar 

  11. L. Li, Q. J. Ruan, R. H. Yang, L. M. Zhao, and Z. Q. Luo, “Bidirectional operation of 100 fs bound solitons in an ultra-compact mode-locked fiber laser,” Optics Express 24, 21020-21026 (2016).

    Article  ADS  Google Scholar 

  12. V. Mamidala, R. I. Woodward, Y. Yang, H. H. Liu, and K. K. Chow, “Graphene-based passively mode-locked bidirectional fiber ring laser”, Optics Express 22, 4539-4546 (2014).

    Article  ADS  Google Scholar 

  13. K. K. Chow, “CVD graphene based low pump threshold bidirectional mode-locked fibre laser,” Electronics Letters 53, 1127-1128 (2017).

    Article  ADS  Google Scholar 

  14. B. W. Liu, Y. Y. Lu, Y. Xiang, X. P. Xiao, Q. Z. Sun, D. M. Liu, and P. P. Shum, “Multiplexed ultrafast fiber laser emitting multi-state solitons,” Optics Express 26, 27461-27471 (2018).

    Article  ADS  Google Scholar 

  15. B. W. Liu, Y. Y. Luo, Y. Xiang, W. Zhou, P. P. Shum, “CFBG-based bidirectional mode-locked fiber laser emitting conventional and dissipative solitons,” IEEE Photonics Technology Letter 31, 1737-1740 (2019).

    Article  ADS  Google Scholar 

  16. Y. Xiang, Y. Y. Luo, B. W. Liu, R. Xia, P. P. Shum, X. H. Tan, D. M. Liu, and Q. Z. Su, “Scalar and vector solitons in a bidirectional mode-locked fibre laser,” Journal of Lightwave Technology 37, 5108-5114 (2019).

    Article  ADS  Google Scholar 

  17. M. Chernysheva, M A. Araimi, H. Kbashi, R. Arif, S. V Sergeyev, and A. Rozhin, “Isolator-free switchable uni- and bidirectional hybrid mode-locked erbium-doped fiber laser,” Optics Express 24, 15721-15729 (2016).

    Google Scholar 

  18. A. A. Krylov, D. S. Chernykh, N. R. Arutyunyan, V. V. Grebenyukov, A. S. Pozharov, and E. D. Obraztsova, “Generation regimes of bidirectional hybridly mode-locked ultrashort pulse erbium-doped all-fiber ring laser with a distributed polarizer,” Applied Optics 55, 420-4209 (2016).

    Article  Google Scholar 

  19. A. A. Krylov, D. S. Chernykh, and E.D. Obraztsova, “Colliding-pulse hybridly mode-locked erbium-doped all-fiber soliton gyrolaser,” Laser Physics 28, 015103 (2018).

    Article  ADS  Google Scholar 

  20. N. Abdukerim, M. I. Kayes, A. Rekik, and M. Rochette, “Bidirectional mode-locked thulium-doped fiber laser,” Applied Optics 57, 7198-7202 (2018).

    Article  ADS  Google Scholar 

  21. Y. Nakajima, Y. Hata, and K. Minoshima, “High-coherence ultra-broadband bidirectional dual-comb fiber laser,” Optics Express 27, 5931-5944 (2019).

    Article  ADS  Google Scholar 

  22. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Optics Express 17, 12692-12697 (2009).

    Article  ADS  Google Scholar 

  23. Z. X. Zhang, Z. W. Xu, and L. Zhang, “Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,” Optics Express 20, 26736-26742 (2012).

    Article  ADS  Google Scholar 

  24. Z. W. Xu, and Z. X. Zhang, “All-normal-dispersion multi-wavelength dissipative soliton Yb-doped fiber laser,” Laser Physics Letters 10, 085105 (2013).

    Article  ADS  Google Scholar 

  25. S. Huang, Y. Wang, P. Yan, J. Zhao, H. Li, and R. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Optics express 22, 11417-11426 (2014).

    Article  ADS  Google Scholar 

  26. G. Yang, Y. Liu, Z. Wang, G. Wang, Z. Wang, and X. Wang, “Dual-wavelength mode-locked Tm3+-doped fiber laser at 2 μm region with controllable soliton pulse number by employing graphene on microfiber,” Optics & Laser Technology 105, 76-79 (2018).

    Article  ADS  Google Scholar 

  27. C. S. Kim and J. U. Kang, “Multiwavelength switching of Raman fiber ring laser incorporating composite polarization-maintaining fiber Lyot-Sagnac filter,” Applied Optics 43, 3151–3157 (2004).

    Article  ADS  Google Scholar 

  28. S. Sugavanam, Z. Yan, V. Kamynin, A. S. Kurkov, L. Zhang, and D. V. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Optics Express 22, 2839–2844 (2014).

    Article  ADS  Google Scholar 

  29. Y. Zhu, F. Xiang, L. Jin, S. Y. Set, and S. Yamashita, “All-fiber dual-wavelength mode-locked laser using a bend-induced-birefringence Lyot-Filter as gain-tilt equalizer,” IEEE Photonics Journal 11, 1-7 (2019).

    Google Scholar 

  30. X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, and Y. Ohishi, “Tunable and switchable all-fiber dual-wavelength mode locked laser based on Lyot filtering effect,” Optics Express 27, 14635-14647 (2019).

    Article  ADS  Google Scholar 

  31. M. Wang, Y. J. Huang, J. W. Yang, Y. Zhang, and S. C. Ruan, “Multi-wavelength mode-locked thulium-doped fiber laser based on a fiber-optic Fabry-Perot interferometer and a nonlinear optical loop mirror,” Laser Physics Letters 15, 085110 (2018).

    Article  ADS  Google Scholar 

  32. X. Zhu, C. Wang, S. Liu, D. Hu, J. Wang, C. Zhu, “Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers,” IEEE Photonics Technology Letters 23, 956-958 (2011).

    Article  ADS  Google Scholar 

  33. X. Zhu, C. Wang, G. Zhang, and R. Xu, “Tunable dual- and triple-wavelength mode-locked all-normal-dispersion Yb-doped fiber laser,” Applied Physics B 118, 69-73 (2014).

    Article  Google Scholar 

  34. X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Scientific reports 3, 2718 (2013).

    Article  ADS  Google Scholar 

  35. X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube mode-locker and intracavity loss tuning,” Optics Express 19, 1168-1173 (2011).

    Article  ADS  Google Scholar 

  36. C. Zeng, Y. D. Cui, and J. Guo, “Observation of dual-wavelength solitons and bound states in a nanotube/microfiber mode-locking fiber laser,” Optics Communications 347, 44-49 (2015).

    Article  ADS  Google Scholar 

  37. T. Zhu, Z. Wang, D. N. Wang, F. Yang, and L. Li, “Generation of wavelength-tunable and coherent dual-wavelength solitons in the C + L band by controlling the intracavity loss,” Photonics Research 7, 853 (2019).

    Article  Google Scholar 

  38. B. Guo, Y. Yao, P. Yan, K. Xu, J. Liu, S. Wang, and Y. Li, “Dual-wavelength soliton mode-locked fiber laser with a ws2-based fiber taper,” IEEE Photonics Technology Letters 28, 323-326 (2016).

    Article  ADS  Google Scholar 

  39. S. Li, Y. Yin, G. Ran, Q. Ouyang, Y. Chen, M. Tokurakawa, E. Lewis, S. W. Harun, and P. Wang, “Dual-wavelength mode-locked erbium-doped fiber laser based on tin disulfide thin film as saturable absorber,” Journal of Applied Physics 125, 243104 (2019).

    Article  ADS  Google Scholar 

  40. A. Yasim, “Switchable and dual-wavelength ultrafast fibre lasers with a MoTe2-based saturable absorber,” Journal of Modern Optics 67, 367-373 (2020).

    Article  ADS  Google Scholar 

  41. K. Zhao, C. Gao, X.Xiao, and C. Yang, “Buildup dynamics of asynchronous vector solitons in a polarization-multiplexed dual-comb fiber laser,” Opt. Lett. 45, 4040-4043 (2020)

    Article  ADS  Google Scholar 

  42. E. Akosman and M. Y. Sander, “Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses,” Optics Express 25, 18592-18602 (2017).

    Article  ADS  Google Scholar 

  43. X. Zhao, T. Li, Y. Liu, Q. Li, and Z. Zheng, “Polarization-multiplexed, dual-comb all-fiber mode-locked laser,” Photon. Res. 6(9), 853-857 (2018).

    Article  Google Scholar 

  44. Y. Nakajima, Y. Hata, and K. Minoshima, “All-polarization-maintaining, polarization-multiplexed, dual-comb fiber laser with a nonlinear amplifying loop mirror,” Optics Express 27(10), 14648-14656 (2019).

    Article  ADS  Google Scholar 

  45. A. Sterczewski, A. Przewłoka, and W. Kaszub, “Computational Doppler-limited dual-comb spectroscopy with a free-running all-fiber laser,” https://arxiv.org/abs/1905.04647 (2019).

  46. K. Zhao, H. Jia, P. Wang, J. Guo, and C. Yang, “Free-running dual-comb fiber laser mode-locked by nonlinear multimode interference,” Optics Letters, 44(17), 4323-4326 (2019).

    Article  ADS  Google Scholar 

  47. J. Fellinger, A. S. Mayer, G. Winkler, W. Grosinger, G. W. Truong, and S. Droste, et al. “Tunable dual-comb from an all-polarization-maintaining single-cavity dual-color Yb:fiber laser,” Optics Express 27(20), 28062-28074 (2019).

    Google Scholar 

  48. T. Li, X. Zhao, J. Chen, Q. Li, S. Xie, and Z. Zheng. “Tri-comb and quad-comb generation based on a multi-dimensional multiplexed mode-locked laser,” IEEE Journal of Lightwave Technology 37(20), 5178-5184 (2019).

    Google Scholar 

  49. F. Shi, P. Cheng, Y. Huang, H. Yao, T. Wang, F. Pang, and X. Zeng, “Mode-locked all-fiber laser emitting two-color high-order transverse mode,” IEEE Photonics Technology Letters, 31(7), 497-500, 2019.

    Article  ADS  Google Scholar 

  50. T. Huang, S. Fu, C. Ke, P. P. Shum, and D. Liu, “Characterization of fiber Bragg grating inscribed in few-mode silica-germanate fiber,” IEEE Photonics Technology Letters, 26(19), 1908-2001, 2014.

    Article  ADS  Google Scholar 

  51. J. Dong, and K. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photonics Technology Letters, 26(19), 1908-2001, 2014.

    ADS  Google Scholar 

  52. T. Liu, S. Chen, and J. Hou, “Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair,” Optics Letters, 41(24), 5692-5695, 2016

    Article  ADS  Google Scholar 

  53. T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” IEEE Journal of Lightwave Technology, 35(11), 2161-2166, 2017

    Article  Google Scholar 

  54. Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE IEEE Journal of Selected Topics in Quantum Electronics, 24(3), 1100906, 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianye Huang or Zhichao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, T., Huang, P., Zhan, B., Zhang, D., Wu, Z. (2022). Multiplexed Dissipative Soliton Fiber Lasers. In: Ferreira, M.F.S. (eds) Dissipative Optical Solitons. Springer Series in Optical Sciences, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-97493-0_10

Download citation

Publish with us

Policies and ethics