Skip to main content

PanSim + Sim-2APL: A Framework for Large-Scale Distributed Simulation with Complex Agents

  • Conference paper
  • First Online:
Engineering Multi-Agent Systems (EMAS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13190))

Included in the following conference series:

Abstract

Agent-based simulation is increasingly being used to model social phenomena involving large numbers of agents. However, existing agent-based simulation platforms severely limit the kinds of the social phenomena that can modeled, as they do not support large scale simulations involving agents with complex behaviors. In this paper, we present a scalable agent-based simulation framework that supports modeling of complex social phenomena. The framework integrates a new simulation platform that exploits distributed computer architectures, with an extension of a multi-agent programming technology that allows development of complex deliberative agents. To show the scalability of our framework, we briefly describe its application to the development of a model of the spread of COVID-19 involving complex deliberative agents in the US state of Virginia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source code for PanSim is available at https://github.com/parantapa/pansim, and that for Sim-2APL is available at https://bitbucket.org/goldenagents/sim2apl.

  2. 2.

    Here we use the terms simple and complex contagions in their literal sense and not specifically in the sense developed and popularized in [13].

  3. 3.

    https://arrow.apache.org/.

  4. 4.

    https://github.com/toml-lang/toml.

  5. 5.

    To ensure that the socio-psychological module processes and PanSim processes don’t compete for CPU resources we use MPI implementation specific configuration to make PanSim processes sleep during the execution of the socio-psychological module. This configuration trades of some performance for ease of programming.

  6. 6.

    We experimented with using Metis and ParMetis [24] for this partitioning. However, we found that our simple approach was much faster and produced adequately good partitions.

  7. 7.

    Since agents can execute multiple plans during one deliberation cycle, this approach does not restrict the agent’s number of actions per time step.

References

  1. Adam, C., Gaudou, B.: BDI agents in social simulations: a survey. Knowl. Eng. Rev. 31(n\(^{\circ }\) 3), pp. 207–238 (2016). https://doi.org/10.1017/S0269888916000096, https://hal.archives-ouvertes.fr/hal-01484960

  2. Adiga, A., et al.: Generating a synthetic population of the United States. Technical report NDSSL 15–009, Network Dynamics and Simulation Science Laboratory (2015)

    Google Scholar 

  3. Barrett, C., et al.: Planning and response in the aftermath of a large crisis: an agent-based informatics framework. In: Pasupathy, R., Kim, S.H., Tolk, A., Hill, R., Kuhl, M.E. (eds.) Proceedings of the 2013 Winter Simulation Conference, Piscataway, NJ, USA, pp. 1515–1526. IEEE Press (2013)

    Google Scholar 

  4. Barrett, C.L., Bisset, K.R., Eubank, S.G., Feng, X., Marathe, M.V.: Episimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, pp. 37:1–37:12 (2008)

    Google Scholar 

  5. Bhatele, A., et al.: Massively parallel simulations of spread of infectious diseases over realistic social networks. In: Proceedings of the IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID. IEEE (2017)

    Google Scholar 

  6. Bisset, K., Chen, J., Feng, X., Vullikanti, A., Marathe, M.: EpiFast: a fast algorithm for large-scale realistic epidemic simulations on distributed memory systems. In: Proceedings of the 23rd International Conference on Supercomputing (2009)

    Google Scholar 

  7. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): Multi-Agent Programming: Languages, Platforms and Applications, Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15. Springer, Boston (2005). https://doi.org/10.1007/b137449

  8. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): Multi-Agent Programming: Languages, Tools and Applications. Springer, USA (2009). https://doi.org/10.1007/978-0-387-89299-3

  9. Bordini, R.H., Hübner, J.F.: Agent-based simulation using BDI programming in Jason. In: Multi-Agent Systems: Simulation and Applications, pp. 451–471 (2009)

    Google Scholar 

  10. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID architecture: conflicts between beliefs, obligations, intentions and desires. In: Proceedings of the 5th International Conference on Autonomous Agents, pp. 9–16 (2001)

    Google Scholar 

  11. Caballero, A., Botía, J., Gómez-Skarmeta, A.: Using cognitive agents in social simulations. Eng. Appl. Artif. Intell. 24(7), 1098–1109 (2011)

    Article  Google Scholar 

  12. Centers for Disease Control and Prevention: COVID-19 pandemic planning scenarios. https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html. Accessed 06 Oct 2020

  13. Centola, D., Macy, M.: Complex contagions and the weakness of long ties. Am. J. Sociol. 113(3), 702–734 (2007)

    Article  Google Scholar 

  14. Citycovid. https://www.anl.gov/dis/citycovid-about-the-model

  15. Dastani, M., Hulstijn, J., van der Torre, L.: How to decide what to do? Eur. J. Oper. Res. 160(3), 762–784 (2005). Decision Analysis and Artificial Intelligence

    Google Scholar 

  16. Dastani, M., Testerink, B.: Design patterns for multi-agent programming. Int. J. Agent-Oriented Softw. Eng. 5(2/3), 167–202 (2016)

    Article  Google Scholar 

  17. de Mooij, J., Dell’Anna, D., Bhattacharya, P., Dastani, M., Logan, B., Swarup, S.: Quantifying the effects of norms on COVID-19 cases using an agent-based simulation. In: Proceedings of the The 22nd International Workshop on Multi-Agent-Based Simulation (MABS) (2021)

    Google Scholar 

  18. Dignum, F., Dignum, V., Jonker, C.M.: Towards agents for policy making. In: David, N., Sichman, J.S. (eds.) Multi-Agent-Based Simulation IX, pp. 141–153. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01991-3_11

    Chapter  Google Scholar 

  19. Gaudou, B., et al.: Comokit: a modeling kit to understand, analyze, and compare the impacts of mitigation policies against the COVID-19 epidemic at the scale of a city. Front. Public Health 8, 587 (2020). https://doi.org/10.3389/fpubh.2020.563247, https://www.frontiersin.org/article/10.3389/fpubh.2020.563247

  20. Gerbessiotis, A.V., Valiant, L.G.: Direct bulk-synchronous parallel algorithms. J. Parallel Distrib. Comput. 22(2), 251–267 (1994)

    Article  Google Scholar 

  21. Gilbert, N.: When does social simulation need cognitive models? In: Sun, R. (ed.) Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation, pp. 428–432. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  22. Gilbert, N., Troitzsch, K.G.: Simulation for the Social Scientist. Open University Press (2006)

    Google Scholar 

  23. Glanz, K., Rimer, B.K., Viswanath, K.: Health Behavior and Health Education: Theory, Research, and Practice. Wiley, Hoboken (2008)

    Google Scholar 

  24. Karypis, G., Schloegel, K., Kumar, V.: Parmetis. Parallel graph partitioning and sparse matrix ordering library. Version 2 (2003)

    Google Scholar 

  25. Macal, C.M., Collier, N.T., Ozik, J., Tatara, E.R., Murphy, J.T.: CHISIM: an agent-based simulation model of social interactions in a large urban area. In: 2018 Winter Simulation Conference (WSC), pp. 810–820. IEEE (2018)

    Google Scholar 

  26. Michel, F.: The IRM4S model: the influence/reaction principle for multi-agent based simulation. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems (2007)

    Google Scholar 

  27. Morvan, G., Veremme, A., Dupont, D.: IRM4MLS: the influence reaction model for multi-level simulation. In: Bosse, T., Geller, A., Jonker, C.M. (eds.) MABS 2010. LNCS (LNAI), vol. 6532, pp. 16–27. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18345-4_2

    Chapter  Google Scholar 

  28. Müller, J.P., Pecchiari, P.: A model for systems of situated autonomous agents: an application to automated deduction (1996)

    Google Scholar 

  29. Müller, S.A., Balmer, M., Neumann, A., Nagel, K.: Mobility traces and spreading of COVID-19. Technical report, Technische Universität Berlin (2020). https://doi.org/10.14279/depositonce-9835

  30. Navarro, L., Flacher, F., Corruble, V.: Dynamic level of detail for large scale agent-based urban simulations. In: Tumer, K., Yolum, P., Sonenberg, L., Stone, P. (eds.) Proceedings of 10th International Conference on Autonomous Agents and Multiagent Systems, Taipei, Taiwan, 2–6 May 2011, pp. 701–708 (2011)

    Google Scholar 

  31. Satsuma, J., Willox, R., Ramani, A., Grammaticos, B., Carstea, A.: Extending the SIR epidemic model. Phys. A: Stat. Mech. Appl. 336(3–4), 369–375 (2004)

    Article  Google Scholar 

  32. Silverman, B.G., Johns, M., Cornwell, J., O’Brien, K.: Human behavior models for agents in simulators and games: part I: enabling science with PMFserv. Presence: Teleoper. Virtual Environ. 15(2), 139–162 (2006)

    Google Scholar 

  33. Singh, D., Padgham, L., Logan, B.: Integrating BDI agents with agent-based simulation platforms. Auton. Agents Multi-Agent Syst. 30(6), 1050–1071 (2016). https://doi.org/10.1007/s10458-016-9332-x

    Article  Google Scholar 

  34. Taillandier, P., et al.: Building, composing and experimenting complex spatial models with the GAMA platform. GeoInformatica 23(2), 299–322 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

Parantapa Bhattacharya and Samarth Swarup were supported in part by NSF Expeditions in Computing Grant CCF-1918656 and DTRA subcontract/ARA S-D00189-15-TO-01-UVA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parantapa Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharya, P., de Mooij, A.J., Dell’Anna, D., Dastani, M., Logan, B., Swarup, S. (2022). PanSim + Sim-2APL: A Framework for Large-Scale Distributed Simulation with Complex Agents. In: Alechina, N., Baldoni, M., Logan, B. (eds) Engineering Multi-Agent Systems. EMAS 2021. Lecture Notes in Computer Science(), vol 13190. Springer, Cham. https://doi.org/10.1007/978-3-030-97457-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97457-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97456-5

  • Online ISBN: 978-3-030-97457-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics