Skip to main content

Energetic Costs of Vibrational Signaling

  • 138 Accesses

Part of the Animal Signals and Communication book series (ANISIGCOM,volume 8)

Abstract

Costs associated with the production of signals used in sexual communication play a central role in the sexual selection theory. Arthropods relying on substrate-borne vibrations have often been included among examples of acoustic communication; however, taking into account that air-borne and substrate-borne mechanical signals are subject to different selection pressures when they travel through the environment via different transmission media, the costs associated with the production of these two types of mechanical signals are also likely to differ. So far, remarkably little is known about costs associated with substrate-borne vibrational communication. In this chapter, we provide an overview of our current knowledge on energy expenditure associated with the production of vibrational signals and indirect costs of male vibrational signaling. We also discuss some technical challenges encountered when measuring respiration rates and determining a relationship between the effort of vibrational signaling and survival. Our goal is to point out an important gap in our understanding of vibrational communication systems and stimulate further studies in this area.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-97419-0_4
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-97419-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8

References

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton NJ

    CrossRef  Google Scholar 

  • Bailey WJ, Withers PC, Endersby M, Gaull K (1993) The energetic costs of calling in the bushcricket Requena verticalis (orthoptera: Tettigoniidae: Listroscelidinae). J Exp Biol 178:21–37

    CrossRef  Google Scholar 

  • Bertram SM, Harrison SJ, Thomson IR, Fitzsimmons LP (2013) Adaptive plasticity in wild cricket’s acoustic signalling. PLoS One 8:e69247

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bluemel JK, Derlink M, Pavlovcic P, Russo IRM, King RA, Corbett E, Sherrard-Smith E, Blejec A, Wilson MR, Stewart AJA, Symondson WOC, Virant-Doberlet M (2014) Integrating vibrational signals, mitochondrial DNA and morphology for species determination in the genus Aphrodes (Hemiptera: Cicadellidae). Syst Entomol 39:304–324

    CrossRef  Google Scholar 

  • Bonduriansky R (2001) The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol Rev 76:305–339

    CAS  PubMed  CrossRef  Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication. Sinauer Associates, Sunderland MA

    Google Scholar 

  • Brandt EE, Kelley JP, Elias DO (2018) Temperature alters multimodal signaling and mating success in an ectotherm. Behav Ecol Sociobiol 72:191

    CrossRef  Google Scholar 

  • Callander S, Kahn AT, Hunt J, Backwell PRY, Jennions MD (2013) The effects of competitors on calling effort and life-span in male field crickets. Behav Ecol 24:1251–1259

    CrossRef  Google Scholar 

  • Chiykowski LN (1970) Notes on the biology of the leafhopper Aphrodes bicincta (Homoptera: Cicadellidae) in the Ottawa area. Can Entomol 102:750–758

    CrossRef  Google Scholar 

  • Clutton-Brock T (2007) Sexual selection in males and females. Science 318:1882–1885

    CAS  PubMed  CrossRef  Google Scholar 

  • Clutton-Brock T (2009) Sexual selection in females. Anim Behav 77:3–11

    CrossRef  Google Scholar 

  • Cocroft RB, McNett GD (2006) Vibratory communication in treehoppers (Hemiptera: Membracidae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor and Francis, Boca Raton FL, pp 307–317

    Google Scholar 

  • Čokl A (2008) Stink bug interaction with host plants during communication. J Insect Physiol 54:1113–1124

    PubMed  CrossRef  CAS  Google Scholar 

  • Čokl A, Blassioli-Moraes MC, Laumann RA, Žunič A, Borges M (2019) Stinkbugs – multisensory communication with chemical and vibratory signals transmitted through different media. In: Hill PSM, Lakes-Harlan R, Mazzoni V, Narins PM, Virant-Doberlet M, Wessel A (eds) Biotremology: studying vibrational behavior. Springer, Heidelberg, pp 91–122

    CrossRef  Google Scholar 

  • Darwin C (1871) The descent of man and selection in relation to sex. John Murray, London, pp 214–423

    CrossRef  Google Scholar 

  • Davranoglou LR, Cicirello A, Taylor GK, Mortimer B (2019a) Planthopper bugs use a fast cyclic elastic recoil mechanisms for effective vibrational communication at small body size. PLoS Biol 17:e3000155

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Davranoglou LR, Mortimer B, Taylor GK, Malenovský I (2019b) On the morphology and possible function of two putative vibroacoustic mechanisms in derbid planthoppers (Hemiptera: Fulgoromorpha: Derbidae). Arthropod Struct Dev 52:100880

    PubMed  CrossRef  Google Scholar 

  • de Groot M, Čokl A, Virant-Doberlet M (2011) Search behaviour in two hemipteran species using vibrational communication. Cent Eur J Biol 6:756–769

    Google Scholar 

  • de Groot M, Derlink M, Pavlovčič P, Prešern J, Čokl A, Virant-Doberlet M (2012) Duetting behaviour in the leafhopper Aphrodes makarovi (Hemiptera: Cicadellidae). J Insect Behav 25:419–440

    CrossRef  Google Scholar 

  • De Luca PA, Cocroft RB (2011) The influence of age on male mate-searching behaviour in thornbug treehoppers. Ethology 117:1–11

    CrossRef  Google Scholar 

  • Derlink M, Pavlovčič P, Stewart AJA, Virant-Doberlet M (2014) Mate recognition in duetting species: the role of male and female vibrational signals. Anim Behav 90:181–193

    CrossRef  Google Scholar 

  • Derlink M, Abt I, Mabon R, Julian C, Virant-Doberlet M, Jacquot E (2018) Mating behavior of Psammotettix alienus (Hemiptera: Cicadellidae). Insect Sci 25:148–160

    PubMed  CrossRef  Google Scholar 

  • Doubell M, Grant PBC, Esterhuizen N, Bazelet CS, Addison P, Terblanche JS (2017) The metabolic costs of sexual signalling in the chirping katydid Plangia graminea (Serville) (orthoptera: Tettigoniidae) are context dependent: cumulative costs add up fast. J Exp Biol 220:4440–4449

    PubMed  Google Scholar 

  • Elias DO, Mason AC, Maddison WP, Hoy RR (2003) Seismic signals in a courting male jumping spider (Araneae: Salticidae). J Exp Biol 206:4029–4039

    PubMed  CrossRef  Google Scholar 

  • Endler JA (2014) The emerging field of tremology. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp vii–x

    Google Scholar 

  • Erregger B, Kovac H, Stabentheiner A, Hartbauer M, Römer H, Schmidt AKD (2017) Cranking up the heat: relationships between energetically costly song features and the increase in thorax temperature in male crickets and katydids. J Exp Biol 220:2635–2644

    PubMed  Google Scholar 

  • Fitzsimmons LP, Bertram SM (2011) The calling songs of male spring field crickets (Gryllus veletis) change as males age. Behaviour 148:1045–1065

    CrossRef  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans. University of Chicago Press, Chicago

    Google Scholar 

  • Gogala M, Čokl A, Drašlar K, Blaževič A (1974) Substrate-borne sound communication in Cydnidae. J Comp Physiol 94:25–31

    CrossRef  Google Scholar 

  • Hack MA (1998) The energetics of male mating strategies in field crickets (orthoptera: Gryllinae: Gryllidae). J Insect Behav 11:853–867. https://doi.org/10.1023/A:1020864111073

    CrossRef  Google Scholar 

  • Halsey LG (2016) Terrestrial movement energetics: current knowledge and its application to the optimising animal. J Exp Biol 219:1424–1431

    PubMed  CrossRef  Google Scholar 

  • Hartbauer M, Stabentheiner A, Römer H (2012) Signalling plasticity and energy saving in a tropical bushcricket. J Comp Physiol A 198:203–217

    CAS  CrossRef  Google Scholar 

  • Hill PSM, Wessel A (2016) Biotremology. Curr Biol 26:R181–R191

    CrossRef  CAS  Google Scholar 

  • Hill PSM, Virant-Doberlet M, Wessel A (2019) What is biotremology? In: Hill PSM, Lakes-Harlan R, Mazzoni V, Narins PM, Virant-Doberlet M, Wessel A (eds) Biotremology: studying vibrational behavior. Springer, Heidelberg, pp 15–25

    CrossRef  Google Scholar 

  • Hoback WW, Wagner WE (1997) The energetic cost of calling in the variable field cricket, Gryllus lineaticeps. Physiol Entomol 22:286–290

    CrossRef  Google Scholar 

  • Hoskin CJ, Higge M (2010) Speciation via species interactions: the divergence of mating traits within species. Ecol Lett 13:409–420

    PubMed  CrossRef  Google Scholar 

  • Huber BA (2005) Sexual selection research on spiders: Progress in biases. Biol Rev 80:363–385

    PubMed  CrossRef  Google Scholar 

  • Hughes NK, Kelley JL, Banks PB (2012) Dangerous liaisons: the predation risk of receiving social signals. Ecol Lett 15:1326–1339

    PubMed  CrossRef  Google Scholar 

  • Hunt J, Brooks R, Jennions MD, Smith MJ, Bentsen CL, Busslère LF (2004) High-quality male field crickets invest heavily in sexual display but die young. Nature 432:1024–1027

    CAS  PubMed  CrossRef  Google Scholar 

  • Hunt J, Jennions MD, Spyrou N, Brooks R (2006) Artificial selection on male longevity influences age-dependent reproductive effort in the black field cricket Teleogryllus commodus. Am Nat 168:E72–E86

    PubMed  CrossRef  Google Scholar 

  • Hunt J, Breuker CJ, Sadowski JA, Moore AJ (2009) Male-male competition, female mate choice and their interaction: determining total sexual selection. J Evol Biol 22:13–26

    PubMed  CrossRef  Google Scholar 

  • Hunt RE, Nault LR (1991) Roles of interplant movement, acoustic communication and phototaxis in mate-location behavior of the leafhopper Graminella nigrifrons. Behav Ecol Sociobiol 28:315–320

    CrossRef  Google Scholar 

  • Irschick DJ, Herrel A, Vanhooydonck B, Van Damme R (2007) A functional approach to sexual selection. Funct Ecol 21:621–626

    CrossRef  Google Scholar 

  • Jocson DI, Smeester M, Leith NT, Macchiano A, Fowler-Finn KD (2019) Temperature coupling of mate attraction signals and female mate preferences in four populations of Enchenopa treehoppers (Hemiptera: Membracidae). J Evol Biol 32(10):1046–1056

    PubMed  CrossRef  Google Scholar 

  • Johnstone RA (1995) Sexual selection, honest advertisement and the handicap principle: reviewing the evidence. Biol Rev 70:1–65

    CAS  PubMed  CrossRef  Google Scholar 

  • Judge KA, Ting JJ, Gwynne DT (2008) Condition dependence of male life span and calling effort in a field cricket. Evolution 62:868–878

    PubMed  CrossRef  Google Scholar 

  • Kavanagh MW (1987) The efficiency of sound production in two cricket species, Gryllotalpa australis and Teleogryllus commodus (orthoptera: Grylloidea). J Exp Biol 130:107–119

    CrossRef  Google Scholar 

  • Kokko H, Rankin DJ (2006) Lonely hearts or sex in the city? Density dependent effects in mating systems. Philos T Roy Soc B 361:319–334

    CrossRef  Google Scholar 

  • Kokko H, Brooks R, McNamara JM, Houston AI (2002) The sexual selection continuum. P Roy Soc Lond B 269:1331–1340

    CrossRef  Google Scholar 

  • Kokko H, Jennions MD, Brooks R (2006) Unifying and testing models of sexual selection. Annu Rev Ecol Evol Syst 37:43–66

    CrossRef  Google Scholar 

  • Kotiaho JS (2000) Testing the assumptions of condition handicap theory: costs and condition dependence of a sexually selected trait. Behav Ecol Sociobiol 48:188–194

    CrossRef  Google Scholar 

  • Kotiaho JS (2001) Costs of sexual traits: a mismatch between theoretical considerations and empirical evidence. Biol Rev 76:365–376

    CAS  PubMed  CrossRef  Google Scholar 

  • Kotiaho JS, Alatalo RV, Mappes J, Parri S (1996) Sexual selection in a wolf spider: male drumming activity, body size, and viability. Evolution 50:1977–1981

    PubMed  CrossRef  Google Scholar 

  • Kotiaho JS, Alatalo RV, Mappes J, Nielsen MG, Parri S, Rivero A (1998a) Energetic costs of size and sexual signalling in a wolf spider. P Roy Soc Lond B 265:2203–2209

    CrossRef  Google Scholar 

  • Kotiaho JS, Alatalo RV, Mappes J, Nielsen MG, Parri S, Rivero A (1998b) Male mating success and risk of predation in a wolf spider: a balance between sexual and natural selection. J Anim Ecol 67:287–291

    CrossRef  Google Scholar 

  • Kotiaho JS, Alatalo RV, Mappes J, Nielsen MG, Parri S (1999) Sexual signalling and viability in wolf spider (Hygrolycosa rubrofasciata): measurements under laboratory conditions. Behav Ecol Sociobiol 46:123–128

    CrossRef  Google Scholar 

  • Kotiaho JS, Alatalo RV, Mappes J, Parri S (2004) Adaptive significance of synchronous chorusing in an acoustically signalling wolf spider. P Roy Soc Lond B 271:1847–1850

    CrossRef  Google Scholar 

  • Kuhelj A (2015) Sexual competitors in the communication strategy of the southern green stink bug (Nezara viridula, Pentatomidae) and the leafhoppers of the genus Aphrodes (Cicadellidae). PhD Thesis, University of Ljubljana, in Slovene

    Google Scholar 

  • Kuhelj A, Virant-Doberlet M (2017) Male-male interactions and male mating success in the leafhopper Aphrodes makarovi. Ethology 123:425–433

    CrossRef  Google Scholar 

  • Kuhelj A, de Groot M, Blejec A, Virant-Doberlet M (2015a) The effect of timing of female vibrational reply on male signalling and searching behaviour in the leafhopper Aphrodes makarovi. PLoS One 10:e0139020

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kuhelj A, de Groot M, Pajk F, Simčič T, Virant-Doberlet M (2015b) Energetic cost of vibrational signalling in a leafhopper. Behav Ecol Sociobiol 69:815–828

    CrossRef  Google Scholar 

  • Kuhelj A, de Groot M, Virant-Doberlet M (2016) Sender-receiver dynamics in leafhopper vibrational duetting. Anim Behav 114:139–146

    CrossRef  Google Scholar 

  • Kuhelj A, Škorjanc A, Vittori M, Žnidaršič N, Hoch H, Wessel A, Virant-Doberlet M (2018) Vibrational signal production in Aphrodes makarovi. In: Hill PSM, Mazzoni V, Virant-Doberlet M (eds) Abstract book, 2nd International symposium on biotremology, p 24. Available from https://eventi.fmach.it/biotremology2018/Book-of-Abstracts

  • Lampert W (1984) The measurement of respiration. In: Downing JA, Rigler FH (eds) A manual on methods for the assessment of secondary productivity in fresh waters. Blackwell, Oxford, pp 413–468

    Google Scholar 

  • Lee H-J, Loher W (1993) The mating strategy of the male short-tailed cricket Anurogryllus muticus de Geer. Ethology 95:327–344

    CrossRef  Google Scholar 

  • Lighton JRB (1987) Cost of tokking: the energetics of substrate communication in the Tok-Tok beetle, Psammodes striatus. J Comp Physiol B 157:11–20

    CrossRef  Google Scholar 

  • Lighton JRB (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, Oxford

    CrossRef  Google Scholar 

  • Lighton JRB (2017) Limitations and requirements for measuring metabolic rates: a mini review. Eur J Clin Nutr 71:301–305

    CAS  PubMed  CrossRef  Google Scholar 

  • Lighton JRB, Halsey LG (2011) Flow-through respirometry applied to chamber systems: pros and cons, hints and tips. Comp Biochem Physiol A 158:265–275

    CAS  CrossRef  Google Scholar 

  • Lighton JRB, Weier JA, Feener DH (1993) The energetics of locomotion and load carriage in the desert harvester ant Pogonomyrex rugosus. J Exp Biol 181:49–61

    CrossRef  Google Scholar 

  • Lopez-Diez JJ (2019) Reproductive strategy of the leafhopper Orientus ishidae Matsumura (Hemiptera: Cicadellidae). Thesis, University of Ljubljana

    Google Scholar 

  • Maan ME, Seehausen O (2011) Ecology, sexual selection and speciation. Ecol Lett 14:591–602

    PubMed  CrossRef  Google Scholar 

  • Macchiano A, Sasson DA, Leith NT, Fowler-Finn KD (2019) Patterns of thermal sensitivity and sex-specificity of courtship behavior differs between two sympatric species of Enchenopa treehopper. Front Ecol Evol 7:361

    CrossRef  Google Scholar 

  • MacNally R, Young D (1981) Song energetics of the bladder cicada, Cystosoma saundersii. J Exp Biol 90:185–196

    CrossRef  Google Scholar 

  • Mappes J, Alatalo RV, Kotiaho J, Parri S (1996) Viability costs of condition-dependent sexual male display in a drumming wolf spider. P Roy Soc Lond B 263:785–789

    CrossRef  Google Scholar 

  • Mazzoni V, Prešern J, Lucchi A, Virant-Doberlet M (2009) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401–413

    PubMed  CrossRef  Google Scholar 

  • Mendelson TC, Shaw KL (2012) The (mis)conception of species recognition. Trends Ecol Evol 27:421–427

    PubMed  CrossRef  Google Scholar 

  • Miles CI, Allison BE, Losinger MJ, Su QT, Miles RN (2017) Motor and mechanical bases of the courtship call of the male treehopper, Umbonia crassicornis. J Exp Biol 220:1915–1924

    PubMed  Google Scholar 

  • Miklas N, Lasnier T, Renou M (2003) Male bugs modulate pheromone emission in response to vibratory signals from conspecifics. J Chem Ecol 29:561–574

    CAS  PubMed  CrossRef  Google Scholar 

  • Miller CW, Svensson EI (2014) Sexual selection in complex environments. Annu Rev Entomol 59:427–445

    CAS  PubMed  CrossRef  Google Scholar 

  • Monaghan P (2015) Behavioral ecology and the successful integration of function and mechanism. Behav Ecol 25:1019–1021

    CrossRef  Google Scholar 

  • Okada K, Pitchers WR, Sharma MD, Hunt J, Hosken DJ (2011) Longevity, calling effort and metabolic rate in two populations of cricket. Behav Ecol Sociobiol 65:1773–1778

    CrossRef  Google Scholar 

  • Ophir AG, Schrader SB, Gillooly JF (2010) Energetic cost of calling: general constraints and species-specific differences. J Evol Biol 23:1564–1569

    CAS  PubMed  CrossRef  Google Scholar 

  • Ossiannilsson F (1949) Insect drummers. A study on the morphology and function of the sound-producing organ of Swedish Homoptera-Auchenorrhyncha. Opuscula Entomologica, Supplementum X:1–146

    Google Scholar 

  • Panhuis TM, Butlin R, Zuk M, Tregenza T (2001) Sexual selection and speciation. Trends Ecol Evol 16:364–371

    PubMed  CrossRef  Google Scholar 

  • Parri S, Alatalo RV, Kotiaho J, Mappes J (1997) Female choice for male drumming in the wolf spider Hygrolycosa rubrofasciata. Anim Behav 53:305–312

    CrossRef  Google Scholar 

  • Polajnar J, Eriksson A, Rossi Stacconi MV, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2014) The process of pair formation mediated by substrate-borne vibrations in a small insect. Behav Process 107:68–78

    CrossRef  Google Scholar 

  • Polajnar J, Maistrelo L, Bertarella A, Mazzoni V (2016) Vibrational communication of the brown marmorated stink bug (Halyomorpha halys). Physiol Entomol 41:249–259

    CrossRef  Google Scholar 

  • Prestwich KN (1994) The energetics of acoustic signaling in anurans and insects. Am Zool 34:625–643

    CrossRef  Google Scholar 

  • Prestwich KN, O’Sullivan K (2005) Simultaneous measurement of metabolic and acoustic power and the efficiency of sound production in two mole cricket species (orthoptera: Gryllotalpidae). J Exp Biol 208:1495–1512

    PubMed  CrossRef  Google Scholar 

  • Prestwich KN, Walker TJ (1981) Energetics of singing in crickets: effect of temperature in three trilling species (orthoptera: Gryllidae). J Comp Physiol B 143:199–212

    CrossRef  Google Scholar 

  • Reinhold K, Greenfield MD, Jang Y, Broce A (1998) Energetic cost of sexual attractiveness: ultrasonic advertisement in wax moths. Anim Behav 55:905–913

    CAS  PubMed  CrossRef  Google Scholar 

  • Rivero A, Alatalo RV, Kotiaho JS, Mappes J, Parri S (2000) Acoustic signalling in a wolf spider: can signal characteristics predict male quality? Anim Behav 6:187–194

    CrossRef  Google Scholar 

  • Robinson DJ, Hall MJ (2002) Sound signalling in orthoptera. Adv Insect Physiol 29:151–278

    CrossRef  Google Scholar 

  • Rodríguez RL (2015) Mating is a give-and-take of influence and communication between the sexes. In: Peretti AV, Aisenberg A (eds) Cryptic female choice in arthropods. Springer, Heidelberg, pp 479–496

    CrossRef  Google Scholar 

  • Rodríguez RL, Barbosa F (2014) Mutual behavioral adjustment in vibrational duetting. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 147–169

    Google Scholar 

  • Rodríguez RL, Haen C, Cocroft RB, Fowler-Finn KD (2012) Males adjust signalling effort based on female mate-preference cues. Behav Ecol 24:1218–1225

    CrossRef  Google Scholar 

  • Rodríguez RL, Boughman JW, Gray DA, Hebets EA, Höbel G, Symes LB (2013) Diversification under sexual selection, the relative roles of mate preference strength and the degree of divergence in mate preferences. Ecol Lett 16:964–974

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Römer H, Lang A, Hartbauer M (2010) The signaller’s dilemma: a cost-benefit analysis of public and private communication. PLoS One 5:e13325

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Rosenthal MF, Elias DO (2019) Nonlinear changes in selection on a mating display across a continuous thermal gradient. P Roy Soc B 286:20191450

    Google Scholar 

  • Ryan MJ, Kime NM (2003) Selection on long distance calls. In: Simmons MA, Fay RA, Popper AN (eds) Acoustic communication. Springer, Heidelberg, pp 225–274

    CrossRef  Google Scholar 

  • Safran RJ, Scordato ESC, Symes LB, Rodríguez RL, Mendelson TC (2013) Contributions of natural and sexual selection to the evolution of premating reproductive isolation: a research agenda. Trends Ecol Evol 28:643–650

    PubMed  CrossRef  Google Scholar 

  • Shuster SM, Wade MJ (2003) Mating systems and mating strategies. Princeton University Press, Princeton NJ

    CrossRef  Google Scholar 

  • Stevens ED, Josephson RK (1977) Metabolic rate and body temperature in singing katydids. Physiol Zool 50:31–42

    CrossRef  Google Scholar 

  • Tauber E, Cohen D, Greenfield MD, Pener MP (2001) Duet singing and female choice in the bushcricket Phaneroptera nana. Behaviour 138:411–430

    CrossRef  Google Scholar 

  • Villarreal SM, Gilbert C (2014) Male Scudderia pistillata katydids defend their acoustic duet against eavesdroppers. Behav Ecol Sociobiol 68:1669–1675

    CrossRef  Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    CrossRef  Google Scholar 

  • Virant-Doberlet M, King RA, Polajnar J, Symondson WOC (2011) Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol Ecol 20:2204–2216

    PubMed  CrossRef  Google Scholar 

  • Virant-Doberlet M, Kuhelj A, Polajnar J, Šturm R (2019) Predator-prey interactions and eavesdropping in vibrational communication networks. Front Ecol Evol 7:203

    CrossRef  Google Scholar 

  • Wessel A, Mühlenthaler R, Hartung V, Kuštor V, Gogala M (2014) The tymbal: evolution of a complex vibration-producing organ in Tymbalia (Hemiptera exl. Sternorrhycha). In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 395–444

    Google Scholar 

  • White CR, Matthews PG, Seymour RS (2008) In situ measurement of calling metabolic rate in an Australian mole cricket, Gryllotalpa monanka. Comp Biochem Physiol A Mol Integr Physiol 150(2):217–221

    PubMed  CrossRef  CAS  Google Scholar 

  • Wilkins MR, Seddon N, Safran RJ (2013) Evolutionary divergence in acoustic signals: causes and consequences. Trends Ecol Evol 28(3):156–166

    PubMed  CrossRef  Google Scholar 

  • Wong BBM, Candolin U (2005) How is female mate choice affected by male competition? Biol Rev 80:1–13

    CrossRef  Google Scholar 

  • Woods WA, Hendrickson H, Mason J, Lewis SM (2007) Energy and predations costs of firefly courtship signals. Am Nat 170:702–708

    PubMed  CrossRef  Google Scholar 

  • Zuk M, Bastiaans E, Langkilde T, Swanger E (2014) The role of behaviour in the establishment of novel traits. Anim Behav 92:333–344. https://doi.org/10.1016/j.anbehav.2014.02.032

    CrossRef  Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438

    CrossRef  Google Scholar 

Download references

Acknowledgments

We would like to thank Peggy Hill for her support and infinite patience. The work received funding from the Slovenian National Research Agency (research program P1-0255, research project J1-8142, as well as PhD fellowship 1000-11-310197 and postdoc research project Z1-8144 awarded to AK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anka Kuhelj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kuhelj, A., Virant-Doberlet, M. (2022). Energetic Costs of Vibrational Signaling. In: Hill, P.S.M., Mazzoni, V., Stritih-Peljhan, N., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Physiology, Ecology, and Evolution. Animal Signals and Communication, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-97419-0_4

Download citation