Skip to main content

Vibrational Behaviour and Communication in the New Zealand Weta (Orthoptera: Anostostomatidae)

  • Chapter
  • First Online:
  • 649 Accesses

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 8))

Abstract

Vibrational signalling is an important communication mode in different taxa of Ensifera (long-horned grasshoppers), even though crickets and tettigoniids are mostly thought of as well-established models for the study of acoustic communication in calling and courtship. In the New Zealand weta (Anostostomatidae), pair formation is not mediated by long-range acoustic communication. This chapter summarises the recent research that has identified the different means of substrate-borne vibrational signals used by weta. Notably, diverse behavioural contexts and signalling modes rely on vibrational signals: giant weta (Deinacridinae) mediate male–male agonistic interactions by dorso-ventral tremulation, ground weta (genus Hemiandrus) use abdominal drumming on plant substrates in pair formation, and tree weta (genus Hemideina) produce vibrational signals by tremulation in aggressive behaviour and by stridulation in defence. Such stridulation produces both airborne sound and substrate vibrations, and as in all other Ensifera studied thus far, the substrate vibrations are detected by mechanosensory organs located in the legs. The sensory elements involved in vibration detection are conserved among weta species with and without tympanal hearing organs, but show specific functional adaptations relating to the different modalities. While the importance and diversity of substrate vibration signals have been established for weta, further characterisation of these signals and sampling of related species will offer insights into the evolutionary divergence of vibrational signalling across the weta groups, and will support studies of the evolution of vibration detection and tympanal hearing in the broader Ensifera.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander RD (1961) Aggressiveness, territoriality, and sexual behavior in field crickets (Orthoptera: Gryllidae). Behaviour 17:130–223

    Article  Google Scholar 

  • Alexander RD (1962) Evolutionary change in cricket acoustical communication. Evolution 16:443–467

    Article  Google Scholar 

  • Bailey WJ (1991) The acoustic behaviour of insects. An evolutionary perspective, Chapman and Hall, London

    Google Scholar 

  • Ball EE (1981) Structure of the auditory system of the weta Hemideina crassidens (Blanchard, 1851) (Orthoptera, Ensifera, Gryllacridoidea, Stenopelmatidae). 2. Ultrastructure of the auditory sensilla. Cell Tissue Res 217:345–359

    Article  CAS  PubMed  Google Scholar 

  • Ball EE, Field LH (1981) Structure of the auditory system of the weta Hemideina crassidens (Blanchard, 1851) (Orthoptera, Ensifera, Gryllacridoidea, Stenopelmatidae). 1. Morphol Histol Cell Tissue Res 217:321–343

    Article  CAS  Google Scholar 

  • Buckley TR, Krosch M, Lesche RAB (2015) Evolution of New Zealand insects: summary and prospectus for future research. Austral Entomol 54:1–27

    Article  Google Scholar 

  • Caldwell MS (2014) Interactions between airborne sound and substrate vibration in animal communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin Heidelberg, pp 65–92

    Google Scholar 

  • Cary PRL (1981) The biology of the weta Zealandosandrus gracilis (Orthoptera: Stenopelmatoidea) from the Cass region. M. Sc. Thesis, Zoology, University of Canterbury, Christchurch, New Zealand

    Google Scholar 

  • Cary PRL (1983) Diet of the ground weta Zealandosandrus gracilis (Orthoptera: Stenopelmatidae). New Zeal J Zool 10:295–297

    Article  Google Scholar 

  • Chappell EM, Trewick SA, Morgan-Richards M (2012) Shape and sound reveal genetic cohesion not speciation in the New Zealand orthopteran, Hemiandrus pallitarsis, despite high mitochondrial DNA divergence. Biol J Linn Soc 105:169–186

    Article  Google Scholar 

  • Chappell EM, Webb DS, Tonkin JD (2014) Notes on sexual size dimorphism, sex ratio and movements of adult ground weta Hemiandrus maculifrons (Walker) (Orthoptera: Anostostomatidae). N Z Entomol 37:83–92

    Article  Google Scholar 

  • Cigliano MM, Braun H, Eades DC, Otte D (2021) Orthoptera species file Version 5.0/5.0. [07.07.2021]. http://Orthoptera.SpeciesFile.org

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Article  Google Scholar 

  • Čokl A, Virant-Doberlet M (2009) Vibrational communication. In: Resh VH, Cardé RT (eds) Encyclopedia of insects, 2nd edn. Academic Press, Amsterdam, pp 1034–1038

    Chapter  Google Scholar 

  • Duthie C, Gibbs G, Burns KC (2006) Seed dispersal by weta. Science 31:1575–1575

    Article  Google Scholar 

  • Elias DO, Mason AC (2010) Signaling in variable environments: substrate-borne signaling mechanisms and communication behavior in spiders. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Research Signpost, Kerala, India, pp 25–46

    Google Scholar 

  • Elias DO, Mason AC, Hoy RR (2004) The effect of substrate on the efficacy of seismic courtship signal transmission in the jumping spider Habronattus dossenus (Araneae: Salticidae). J Exp Biol 207:4105–4110

    Article  PubMed  Google Scholar 

  • Ewers RM, Cowley G (2005) The role of sound production in determining dominance in agonistic interactions between male tree wetas (Hemideina crassidens, Orthoptera: Anostostomatidae). N Z Nat Sci 30:11–17

    Google Scholar 

  • Field LH (1978) The stridulatory apparatus of New Zealand wetas in the genus Hemideina (Insecta: Orthoptera: Stenopelmatidae). J Roy Soc N Z 8:359–875

    Article  Google Scholar 

  • Field LH (1982) Stridulatory structures and acoustic spectra of New Zealand wetas (Orthoptera: Stenopelmatidae). Int J Insect Morphol Embryol 11:39–51

    Article  Google Scholar 

  • Field LH (1993) Structure and evolution of stridulatory mechanisms in New Zealand wetas (Orthoptera: Stenopelmatidae). Int J Insect Morphol Embryol 22:163–183

    Article  Google Scholar 

  • Field LH (2001a) Introduction. In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Wallingford, pp xv–xx

    Chapter  Google Scholar 

  • Field LH (2001b) Stridulatory mechanisms and associated behaviour in New Zealand weta. In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Wallingford, pp 271–295

    Chapter  Google Scholar 

  • Field LH (2001c) Aggression behaviour in New Zealand tree wetas. In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Wallingford, pp 333–349

    Chapter  Google Scholar 

  • Field LH (2001d) Sensory physiology. In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Wallingford, pp 429–458

    Chapter  Google Scholar 

  • Field LH, Glasgow S (2001) Defence behavior. In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Wallingford, pp 297–316

    Chapter  Google Scholar 

  • Field LH, Jarman TH (2001) Mating behaviour. In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Wallingford, pp 317–332

    Chapter  Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs of insects. Adv Insect Physiol 27:1–228

    Article  Google Scholar 

  • Field LH, Pflüger H-J (1989) The femoral chordotonal organ: a bifunctional orthopteran (Locusta migratoria) sense organ? Comp Biochem Physiol A 93:729–743

    Article  Google Scholar 

  • Field LH, Rind FC (1981) A single insect chordotonal organ mediates inter- and intra-segmental leg reflexes. Comp Biochem Physiol 68A:99–102

    Article  Google Scholar 

  • Field LH, Rind FC (1992) Stridulatory behavior in a New Zealand weta, Hemideina crassidens. J Zool 228:371–394

    Article  Google Scholar 

  • Field LH, Roberts KL (2003) Novel use of hair sensilla in acoustic stridulation by New Zealand giant wetas (Orthoptera: Anostostomatidae). Arthropod Struct Dev 31:287–296

    Article  PubMed  Google Scholar 

  • Field LH, Sandlant GR (2001) The gallery-related ecology of New Zealand tree wetas, Hemideina femorata and Hemideina crassidens (Orthoptera, Anostostomatidae). In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Wallingford, pp 243–257

    Chapter  Google Scholar 

  • Field LH, Hill KG, Ball EE (1980) Physiological and biophysical properties of the auditory system of the New Zealand weta Hemideina crassidens (Blanchard, 1851) (Ensifera: Stenopelmatidae). J Comp Physiol A 141:31–37

    Article  Google Scholar 

  • Gibbs G (1998) Raukumara tusked weta: discovery, ecology and management implications. Conservation advisory science notes 218, department of conservation, Wellington NZ

    Google Scholar 

  • Gibbs GW (1999) Four new species of giant weta, Deinacrida (Orthoptera: Anostostomatidae: Deinacridinae) from New Zealand. J Roy Soc N Z 29:307–324

    Article  Google Scholar 

  • Gibbs GW (2001) Habitats and biogeography of New Zealand’s deinacridine and tusked weta species. In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Wallingford, pp 35–55

    Chapter  Google Scholar 

  • Gibbs GW (2006) Ghosts of Gondwana. The history of life in New Zealand, Craig Potton Publishing, Nelson, NZ

    Google Scholar 

  • Gordon SD, Tiller B, Windmill JF, Krugner R, Narins PM (2019) Transmission of the frequency components of the vibrational signal of the glassy-winged sharpshooter, Homalodisca vitripennis, within and between grapevines. J Comp Physiol A 205:783–791

    Article  CAS  Google Scholar 

  • Greenfield MD (2002) Signalers and receivers. Oxford University Press, Oxford, Mechanisms and evolution of arthropod communication

    Google Scholar 

  • Griffin MJ, Trewick SA, Wehi PM, Morgan-Richards M (2011) Exploring the concept of niche convergence in a land without rodents: the case of weta as small mammals. New Zeal J Ecol 35:302–307

    Google Scholar 

  • Gwynne D (2004) Reproductive behavior of ground weta (Orthoptera: Anostostomatidae): drumming behavior, nuptial feeding, post-copulatory guarding and maternal care. J Kansas Entomol Soc 77:414–428

    Article  Google Scholar 

  • Hayashi Y, Yoshimura J, Roff DA, Kumita T, Shimizu A (2018) Four types of vibration behaviors in a mole cricket. PLoS One 13(10):e0204628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hedwig B (2014) Towards an understanding of the neural basis of acoustic communication in crickets. In: Hedwig B (ed) Insect hearing and communication. Springer, New York, pp 123–141

    Chapter  Google Scholar 

  • Hill KG (1980) Physiological characteristics of auditory receptors in Hemideina crassidens (Blanchard) (Ensifera: Stenopelmatidae). J Comp Physiol 141:39–46

    Article  Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge MA

    Book  Google Scholar 

  • Hill PSM (2009) How do animals use substrate-borne vibrations as an information source? Naturwissenschaften 96:1355–1371

    Article  CAS  PubMed  Google Scholar 

  • Hill PSM (2012) Do insect drummers actually drum? Studying vibrational communication across taxa. Mitt DGaaE 18:603–611

    Google Scholar 

  • Hill PSM (2014) Stretching the paradigm or building a new? Development of a cohesive language for vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin Heidelberg, pp 13–30

    Google Scholar 

  • Hill PSM, Shadley JR (1997) Substrate vibration as a component of a calling song. Naturwissenschaften 84:460–463

    Article  CAS  Google Scholar 

  • Howard DR, Schmidt AP, Hall CL, Mason AC (2018) Substrate-borne vibration mediates intrasexual agonism in the New Zealand Cook Strait giant weta (Deinacrida rugosa). J Insect Behav 31:599–615

    Article  Google Scholar 

  • Ingrisch S, Rentz DCF (2009) Orthoptera (grasshoppers, locusts, katydids, crickets). In: Resh VH, Carde RT (eds) Encyclopedia of insects, 2nd edn. Academic Press, Amsterdam, pp 732–743

    Chapter  Google Scholar 

  • Johns PM (1997) The Gondwanaland Weta: family Anostostomatidae (formerly in Stenopelmatidae, Henicidae or Mimnermidae): nomenclatural problems, world checklist, new genera and species. J Orthoptera Res 6:125–138

    Article  Google Scholar 

  • Johns PM (2001) Distribution and conservation status of ground weta, Hemiandrus species (Orthoptera: Anostostomatidae). Science for conservation 180. Department of Conservation, Wellington

    Google Scholar 

  • Kalmring K (1983) Convergence of auditory and vibratory senses at the neuronal level of the ventral nerve cord in grasshoppers; its probable importance for behavior in the habitat. In: Horn E (ed) Multimodal convergences in sensory systems. Fortschr Zool 28:129–141

    Google Scholar 

  • Kalmring K (1985) Vibrational communication in insects (reception and integration of vibratory information). In: Kalmring K, Elsner E (eds) Acoustic and vibrational communication in insects. Parey, Berlin Hamburg, pp 127–134

    Google Scholar 

  • Kalmring K, Kühne R (1983) The processing of acoustic and vibrational information in insects. In: Lewis B (ed) Bioacoustics. Academic Press, London, A comparative approach, pp 261–282

    Google Scholar 

  • Kalmring K, Rössler W, Unrast C (1994) Complex tibial organs in the fore-, mid- and hindlegs of the bushcricket Gampsocleis gratiosa (Tettigoniidae): comparison of physiology of the organs. J Exp Zool 270:155–161

    Article  Google Scholar 

  • Kelly CD (2006a) Movement patterns and gallery use by the sexually dimorphic Wellington tree weta. New Zeal J Ecol 30:273–278

    Google Scholar 

  • Kelly CD (2006b) Fighting for harems: assessment strategies during male–male contests in the sexually dimorphic Wellington tree weta. Anim Behav 72:727–736

    Article  Google Scholar 

  • Kelly CD (2006c) Resource quality or harem size: what influences male tenure at refuge sites in tree weta (Orthoptera: Anostostomatidae)? Behav Ecol Soiobiol 16:145–152

    Article  Google Scholar 

  • Kelly CD, Adams DC (2010) Sexual selection, ontogenetic acceleration, and hypermorphosis generates male trimorphism in Wellington tree weta. Evol Biol 37:200–209

    Article  Google Scholar 

  • Kelly CD, Bussière LF, Gwynne DT (2008) Sexual selection for male mobility in a giant insect with female-biased size dimorphism. Am Nat 172:417–423

    Article  PubMed  Google Scholar 

  • Keuper A, Kühne R (1983) The acoustic behaviour of the bushcricket Tettigonia cantans II. Transmission of airborne sound and vibration signals in the biotope. Behav Process 8:125–145

    Article  CAS  Google Scholar 

  • Lakes-Harlan R, Strauß J (2014) Functional morphology and evolutionary diversity of vibration receptors in insects. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin Heidelberg, pp 277–302

    Google Scholar 

  • Lakes-Harlan R, Stölting H, Stumpner A (1999) Convergent evolution of an insect ear from a preadaptive structure. P Roy Soc Lond B 266:1161–1167

    Article  Google Scholar 

  • Lomas K, Montealegre-Z F, Parsons S, Field LH, Robert D (2011) Mechanical filtering for narrow-band hearing in the weta. J Exp Biol 214:778–785

    Article  PubMed  Google Scholar 

  • Lomas KF, Greenwood DR, Windmill JF, Jackson JC, Corfield J, Parsons S (2012) Discovery of a lipid synthesising organ in the auditory system of an insect. PLoS One 7(12):e51486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matheson T, Field LH (1990) Innervation of the metathoracic femoral chordotonal organ of locusta migratoria. Cell Tissue Res 259:551–560

    Article  Google Scholar 

  • McIntyre M (2001) The ecology of some large weta species in New Zealand. In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Wallingford, pp 231–242

    Google Scholar 

  • McVean A, Field LH (1996) Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J Zool 239:101–122

    Article  Google Scholar 

  • Monteith GB, Field LH (2001) Australian king crickets: distribution, habitats and biology (Orthoptera: Anostostomatidae). In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Wallingford, pp 79–94

    Chapter  Google Scholar 

  • Nishino H (2003) Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: I. Femoral chordotonal organ J Comp Neurol 464:312–326

    Article  PubMed  Google Scholar 

  • Nishino H, Field LH (2003) Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: II. Complex tibial organ J Comp Neurol 464:327–342

    Article  PubMed  Google Scholar 

  • Nishino H, Sakai M (1997) Three neural groups in the femoral chordotonal organ of the cricket Gryllus bimaculatus: central projections and soma arrangement and displacement during joint flexion. J Exp Biol 200:2583–2595

    Article  CAS  PubMed  Google Scholar 

  • Nishino H, Mukai H, Takanashi T (2016) Chordotonal organs in hemipteran insects: unique peripheral structures but conserved central organization revealed by comparative neuroanatomy. Cell Tissue Res 366:549–572

    Article  PubMed  Google Scholar 

  • Pennisi E (2017) Saving the ‘god of ugly things’. Science 356:1001–1003

    Article  CAS  PubMed  Google Scholar 

  • Pflüger H-J, Bräunig P, Hustert R (1988) The organization of mechanosensory neuropiles in locust thoracic ganglia. Philos Trans R Soc Lond B 321:1–26

    Article  Google Scholar 

  • Pollack GS (1998) Neural processing of acoustic signals. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, New York, pp 139–196

    Chapter  Google Scholar 

  • Pratt RC, Morgan-Richards M, Trewick SA (2008) Diversification of New Zealand weta (Orthoptera: Ensifera: Anostostomatidae) and their relationships in Australasia. Philos Trans R Soc Lond B 363:3427–3437

    Article  Google Scholar 

  • Robinson DJ, Hall MJ (2002) Sound signalling in Orthoptera. Adv Insect Physiol 29:151–278

    Article  Google Scholar 

  • Rohrseitz K, Kilpinen O (1997) Vibration transmission characteristics of the legs of freely standing honeybees. Zoology 100:80–84

    Google Scholar 

  • Schnorbus H (1971) Die subgenualen Sinnesorgane von Periplaneta americana: Histologie und Vibrationsschwellen. Z vergl Physiol 71:14–48

    Article  Google Scholar 

  • Schumacher R (1973) Morphologische Untersuchungen der tibialen Tympanalorgane von neun einheimischen Laubheurschrecken. Z Morphol Tiere 75:267–282

    Article  Google Scholar 

  • Sherley GH, Hayes LM (1993) The conservation of a giant weta (Deinacrida n. sp. Orthoptera: Stenopelmatidae) at Mahoenui, King Country: habitat use, and other aspects of its ecology. N Z Entomol 16:55–68

    Article  Google Scholar 

  • Song H (2018) Biodiversity of orthoptera. In: Foottit RG, Adler PH (eds) Insect biodiversity: science and society, vol 2. Wiley, Hoboken, pp 245–279

    Chapter  Google Scholar 

  • Song H, Amédégnato C, Desutter-Grandcolas L, Heads SW, Huang Y, Otte D, Whiting MF (2015) 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics 31:621–651

    Article  PubMed  Google Scholar 

  • Song H, Béthoux O, Shin S, Donath A, Letsch H, Liu S, McKenna DD, Meng G, Misof B, Podsiadlowski L, Zhou X, Wipfler B, Simon S (2020) Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nat Commun 11:4939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein W, Sauer AE (1999) Physiology of vibration-sensitive afferents in the femoral chordotonal organ of the stick insect. J Comp Physiol A 184:253–263

    Article  Google Scholar 

  • Stiedl O, Kalmring K (1989) The importance of song and vibratory signals in the behaviour of the bushcricket Ephippiger ephippiger Fiebig (Orthoptera, Tettigoniidae): taxis by females. Oecologia 80:142–144

    Article  CAS  PubMed  Google Scholar 

  • Strauß J (2017a) The scolopidial accessory organs and Nebenorgans in orthopteroid insects: comparative neuroanatomy, mechansosensory function, and evolutionary origin. Arthropod Struct Dev 46:765–776

    Article  PubMed  Google Scholar 

  • Strauß J (2017b) The scolopidial accessory organ in the Jerusalem cricket (Orthoptera: Stenopelmatidae). Arthropod Struct Dev 46:171–177

    Article  PubMed  Google Scholar 

  • Strauß J (2019) What determines the number of auditory sensilla in the tympanal hearing organs of Tettigoniidae? Perspectives from comparative neuroanatomy and evolutionary forces. J Orthoptera Res 28:205–219

    Article  Google Scholar 

  • Strauß J, Lakes-Harlan R (2009) The evolutionary origin of auditory receptors in Tettigonioidea: the complex tibial organ of Schizodactylidae. Naturwissenschaften 96:143–146

    Article  PubMed  CAS  Google Scholar 

  • Strauß J, Lakes-Harlan R (2017) Vibrational sensitivity of the subgenual organ complex in female Sipyloidea sipylus stick insects in different experimental paradigms of stimulus direction, leg attachment, and ablation of a connective tibial sense organ. Comp Physiol Biochem A 203:100–108

    Article  CAS  Google Scholar 

  • Strauß J, Stritih-Peljhan N, Nieri R, Virant-Doberlet M, Mazzoni V (2021) Communication by substrate-borne mechanical waves in insects: from basic to applied biotremology. Adv Insect Physiol 61:189–307

    Article  Google Scholar 

  • Strauß J, Lomas K, Field LH (2017) The complex tibial organ of the New Zealand ground weta: sensory adaptations for vibrational signal detection. Sci Rep 7:2031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stritih N, Čokl A (2014) The role of frequency in vibrational communication of Orthoptera. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin Heidelberg, pp 375–393

    Google Scholar 

  • Stritih Peljhan N, Strauß J (2018) The mechanical leg response to vibration stimuli in cave crickets and implications for vibrosensory organ functions. J Comp Physiol A 205:687–702

    Article  CAS  Google Scholar 

  • Stritih-Peljhan N, Rühr PT, Buh B, Strauß J (2019) Low-frequency vibration transmission and mechanosensory detection in the legs of cave crickets. Comp Biochem Physiol A 233:89–96

    Article  CAS  Google Scholar 

  • Taylor Smith BL, Morgan-Richards M, Trewick SA (2013) New Zealand weta: (Anostostomatidae: Hemiandrus): description of two species with notes on their biology. New Zeal J Zool 40:314–329

    Article  Google Scholar 

  • Taylor Smith BL, Trewick SA, Morgan-Richards M (2016) Three new ground weta species and a redescription of Hemiandrus maculifrons. New Zeal J Zool 43:363–383

    Article  Google Scholar 

  • ter Hofstede HM, Schöneich S, Robillard T, Hedwig B (2015) Evolution of a communication system by sensory exploitation of startle behavior. Curr Biol 25:3245–3252

    Article  PubMed  CAS  Google Scholar 

  • Trewick SA (2021) A new species of large Hemiandrus ground wētā (Orthoptera: Anostostomatidae) from North Island, New Zealand. Zootaxa 4942:207–218

    Article  Google Scholar 

  • Trewick SA, Morgan-Richards M (2004) Phylogenetics of New Zealand’s tree, giant and tusked weta (Orthoptera: Anostostomatidae): evidence from mitochondrial DNA. J Orthoptera Res 13:185–196

    Google Scholar 

  • Trewick SA, Morgan-Richards M (2005) After the deluge: mitochondrial DNA indicates Miocene radiation and Pliocene adaptation of tree and giant weta (Orthoptera: Anostostomatidae). J Biogeogr 32:295–309

    Article  Google Scholar 

  • Trewick SA, Morgan-Richards M (2009) New Zealand, biology. In: Gillespie R, Clague D (eds) Encyclopedia of islands. University of California Press, Oakland CA

    Google Scholar 

  • Trewick SA, Morgan-Richards M (2019) Wild life New Zealand, 2nd edn. Hand-in-Hand Press, Palmerston North, NZ

    Google Scholar 

  • Trewick SA, Taylor-Smith BL, Morgan-Richards M (2021) Ecology and systematics of the wine wētā and allied species, with description of four new Hemiandrus species. New Zeal J Zool 48:47–80

    Article  Google Scholar 

  • Vandergast AG, Weissman DB, Wood DA, Rentz DCF, Bazelet CS, Ueshima N (2017) Tackling an intractable problem: can greater taxon sampling help resolve relationships within the Stenopelmatoidea (Orthoptera: Ensifera)? Zootaxa 4291(1):001–033

    Article  Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Article  Google Scholar 

  • Walker TJ (1962) Factors responsible for intraspecific variation in the calling songs of crickets. Evolution 16:407–428

    Article  Google Scholar 

  • Watts C, Thornburrow D (2011) Habitat use, behavior and movement patterns of a threatened New Zealand giant weta, Deinacrida heteracantha (Anostostomatidae: Orthoptera). J Orthoptera Res 20:127–135

    Article  Google Scholar 

  • Weissman DB (2001) Communication and reproductive behaviour in North American Jerusalem crickets (Stenopelmatus) (Orthoptera: Stenopelmatidae). In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Wallingford, pp 351–373

    Chapter  Google Scholar 

  • Wessel A, Mühlethaler R, Hartung V, Kuštor V, Gogala M (2014) The tymbal: evolution of a complex vibration-producing organ in the Tymbalia (Hemiptera excl. Sternorrhyncha). In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin Heidelberg, pp 395–444

    Google Scholar 

  • Yack J (2016) Vibrational signaling. In: Pollack GS, Mason AC, Popper AN, Fay RR (eds) Insect hearing. Springer International Publishing, Switzerland, pp 99–123

    Chapter  Google Scholar 

Download references

Acknowledgements

We wish to thank Peggy Hill and Andreas Wessel for inviting a contribution on biotremology, and Meta Virant-Doberlet for comments on the manuscript. We are indebted to Steve Trewick for providing the version of Fig. 4, and information on the taxonomy of weta species. We thank Oxford University Press and John Wiley & Sons for kind permission to reprint figures. We also thank Nataša Stritih-Peljhan for helpful comments on an earlier manuscript version. We acknowledge and thank the Te Atiawa, Taranaki, Ngati Tama, and Ngati Ruanui Maori Iwi, along with the Waikato Tainui for approval of research and access to the lands on which much of this described research occurred. Finally, we thank Dr. Larry Field for the research cooperation on H. pallitarsis at the Edward Percival Field Station, Kaikoura, New Zealand, and Dr. Corinne Watts for assistance with initial work with D. mahoenui at Landcare Research, Hamilton, New Zealand, and UNH students Brooke Woelber, Sarah Dodgin, and Megan Bezdicek for valuable assistance with giant weta field studies. J. S. is supported by a grant from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—STR 1329/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Strauß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strauß, J., Howard, D.R. (2022). Vibrational Behaviour and Communication in the New Zealand Weta (Orthoptera: Anostostomatidae). In: Hill, P.S.M., Mazzoni, V., Stritih-Peljhan, N., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Physiology, Ecology, and Evolution. Animal Signals and Communication, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-97419-0_3

Download citation

Publish with us

Policies and ethics