Skip to main content

Speleotremology: Ecology and Evolution of Vibrational Communication in Cavernicolous Insects

  • 149 Accesses

Part of the Animal Signals and Communication book series (ANISIGCOM,volume 8)

Abstract

Colonization of underground habitats requires specific adaptations to cope with conditions that are strongly different from those in surface environments, most notably in the absence of visual and other environmental cues, as well as a less complex community structure. The ability to orientate, to recognize and to locate potential mating partners in permanent darkness is crucial to survive, to produce offspring, and to establish viable populations. Communication systems that are effective for a variety of taxa in surface environments, such as substrate-borne vibrational signals, may or may not be favored by selection during the evolutionary process of adaptation to caves, apparently depending on the preferred substrate of the animals studied. As examples for these selective regimes, we discuss two case studies on intraspecific communication in the cave environment that have been studied in depth, one from the Hemiptera (Auchenorrhyncha: Fulgoromorpha: Cixiidae) and one from the Orthoptera (Ensifera: Rhaphidophoridae). Behavioral and bioacoustic approaches show the complex signaling behaviors involving substrate vibrations in the cave species that occupy specialized and rare habitats favoring vibration transmission. The common rock substrate of caves, on the other hand, provides an unfavorable habitat for vibrational communications, in which vibration signals may not be used effectively by insects. This ecological setting may eventually even lead to an evolutionary regression of the sensory structures involved in vibration detection.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-97419-0_13
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-97419-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4
Fig. 13.5
Fig. 13.6
Fig. 13.7

References

  • Aldrich JR (1996) Sex pheromones in Homoptera and Heteroptera. In: Schaefer CW (ed) Studies on hemipteran phylogeny. Entomological Society of America, Lanham, MD, pp 199–233

    Google Scholar 

  • Allegrucci G, Sbordoni V (2019) Insights into the molecular phylogeny of Rhaphidophoridae, an ancient, worldwide lineage of Orthoptera. Mol Phylogenet Evol 138:126–138

    PubMed  CrossRef  Google Scholar 

  • Allegrucci G, Todisco V, Sbordoni V (2005) Molecular phylogeography of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae): a scenario suggested by mitochondrial DNA. Mol Phylogenet Evol 37:153–164

    CAS  PubMed  CrossRef  Google Scholar 

  • Allegrucci G, Trucchi E, Sbordoni V (2011) Tempo and mode of species diversification in Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae). Mol Phylogenet Evol 60:108–121

    PubMed  CrossRef  Google Scholar 

  • Allegrucci G, Ketmaier V, Di Russo C, Rampini M, Sbordoni V, Cobolli M (2017) Molecular phylogeography of Troglophilus cave crickets (Orthoptera, Rhaphidophoridae): a combination of vicariance and dispersal drove diversification in the East Mediterranean region. J Zool Syst Evol Res 55:310–325

    CrossRef  Google Scholar 

  • Alt JA, Lakes-Harlan R (2018) Sensing of substrate vibrations in the adult cicada Okanagana rimosa (Hemiptera: Cicadidae). J Insect Sci 18(3):16

    PubMed Central  CrossRef  Google Scholar 

  • Ander K (1939) Vergleichend-anatomische und phylogenetische Studien über die Ensifera (Saltatoria). Opuscula Ent Suppl 2:1–306

    Google Scholar 

  • Asche M (1997) A review of the systematics of Hawaiian planthoppers (Hemiptera: Fulgoroidea). Pac Sci 51:366–376

    Google Scholar 

  • Barr TC (1968) Cave ecology and the evolution of troglobites. Evol Biol 2:35–102

    Google Scholar 

  • Bernardini C, Di Russo C (2004) A general model for the life cycle of Dolichopoda cave crickets (Orthoptera: Rhaphidophoridae). Eur J Entomol 101:69–73

    CrossRef  Google Scholar 

  • Boldyrev B (1912) Begattung und Spermatophoren bei Tachycines asynamorus Adel. (Orthoptera, Stenopelmatidae). Rev Rus Entomol 12:552–570

    Google Scholar 

  • Boldyrev BT (1913) Über Begattung und die Spermatophoren bei Locustodea und Gryllodea. Rev Rus Entomol 13:484–490

    Google Scholar 

  • Booij CJH (1982) Biosystematics of the Muellerianella complex (Homoptera, Delphacidae), interspecific and geographic variation in acoustic behaviour. Z Tierpsychol 58:31–52

    CrossRef  Google Scholar 

  • Bourgoin T (2019) FLOW (Fulgoromorpha lists on the web): a world knowledge base dedicated to Fulgoromorpha. Version 8, updated 27 December 2019. http://hemiptera-databases.org/flow/

  • Buh B (2011) Morphological and functional characterization of vibratory receptor neurons in cave crickets of the genus Troglophilus (Orthoptera, Rhaphidophoridae). Graduation thesis, University of Ljubljana

    Google Scholar 

  • Caccone A, Sbordoni V (1987) Molecular evolutionary divergence among north American cave crickets. I. Allozyme variation. Evolution 41:1198–1214

    PubMed  CrossRef  Google Scholar 

  • Carchini G, Rampini M, Sbordoni V (1994) Life cycle and population ecology of the cave cricket Dolichopoda geniculata (costa) from Valmarino cave (Central Italy). Int J Speleol 23:203–218

    CrossRef  Google Scholar 

  • Chopard L (1938) La Biologie des Orthoptères. Lechevalier, Paris

    Google Scholar 

  • Christiansen K (2012) Morphological adaptations. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Elsevier, Amsterdam, pp 517–528

    CrossRef  Google Scholar 

  • Cigliano MM, Braun H, Eades DC, Otte D (2019) Orthoptera species file. Ver 5.0./5.0. [02.08.2019]. http://orthoptera.speciesfile.org/

  • Claridge MF (1985) Acoustic signals in the Homoptera: behavior, taxonomy, and evolution. Annu Rev Entomol 30:297–317

    CrossRef  Google Scholar 

  • Claridge MF (1990) Acoustic recognition signals: barriers to hybridisation in Homoptera Auchenorrhyncha. Can J Zool 68:1741–1746

    CrossRef  Google Scholar 

  • Cloudsley-Thompson JL (1988) Evolution and adaptation of terrestrial arthropods. Springer, Heidelberg

    CrossRef  Google Scholar 

  • Čokl A, Kalmring K, Rössler W (1995) Physiology of atympanate tibial organs in forelegs and midlegs of the cave-living ensifera, Troglophilus neglectus (Raphidophoridae, Gryllacridoidea). J Exp Zool 273:376–388

    CrossRef  Google Scholar 

  • Čokl A, Virant-Doberlet M, Zorović M (2006) Sense organs involved in vibratory communication of bugs. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication. Physiology, behaviour, ecology and evolution. CRC Press, Boca Raton, FL, pp 71–80

    Google Scholar 

  • Culver DC (1982) Cave life: evolution and ecology. Harvard University Press, Cambridge, MA

    CrossRef  Google Scholar 

  • Davranoglou L-R, Cicirella A, Taylor GK, Mortimer B (2019) Planthopper bugs use a fast, cyclic recoil mechanism for effective vibrational communication at small body size. PLoS Biol 17(3):e3000155. https://doi.org/10.1371/journal.pbio.3000155

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • De Pasquale L, Cesaroni D, Di Russo C, Sbordoni V (1995) Trophic niche, age structure and seasonality in Dolichopoda cave crickets. Ecogeography 18:217–224

    CrossRef  Google Scholar 

  • De Vrijer PWF (1984) Variability in calling signals of the planthopper Javesella pellucida (F.) (Homoptera: Delphacidae) in relation to temperature, and consequences for species recognition during distant communication. Neth J Zool 34(3):388–406

    CrossRef  Google Scholar 

  • De Vrijer PWF (1986) Species distinctiveness and variability of acoustic calling signals in the planthopper genus Javesella (Homoptera: Delphacidae). Neth J Zool 36:162–175

    CrossRef  Google Scholar 

  • de Winter AJ, Rollenhagen T (1990) The importance of male and female acoustic behaviour for reproductive isolation in Ribautodelphax planthoppers (Homoptera: Delphacidae). Biol J Linn Soc 40:191–206

    CrossRef  Google Scholar 

  • Debaisieux P (1938) Organes scolopidiaux des pattes d’Insectes. II. La Cellule 47:77–202

    Google Scholar 

  • Decu V, Juberthie C (2004) Insecta: Coleoptera (beetles). In: Gunn J (ed) Encyclopedia of caves and karst science. CRC Press, New York, pp 965–974

    Google Scholar 

  • den Bieman CFM (1986) Acoustic differentiation and variation in planthoppers of the genus Ribautodelphax (Homoptera, Delphacidae). Neth J Zool 36:461–480

    CrossRef  Google Scholar 

  • Desutter-Grandcolas L (2003) Phylogeny and the evolution of acoustic communication in extant Ensifera (Insecta, Orthoptera). Zool Scr 32:525–561

    CrossRef  Google Scholar 

  • Di Russo C, Sbordoni V (1998) Gryllacridoidea. In: Juberthie C, Decu V (eds) Encyclopaedia Biospeologica. Moulis, Bucharest, pp 979–988

    Google Scholar 

  • Di Russo C, Vellei A, Sbordoni V (1987) Life cycle and age structure of Dolichopoda populations (Orthoptera, Raphidophoridae) from natural and artificial cave habitats. Boll Zool 54:337–340

    CrossRef  Google Scholar 

  • Di Russo C, Rampini M, Cobolli M (2014) The cave crickets of Greece: a contribution to the study of southern Balkan Rhaphidophoridae diversity (Orthoptera), with the description of a new species of Troglophilus Krauss, 1879. Biodivers J 5:397–420

    Google Scholar 

  • Eades DC (1964) General biology and geographic variation of Ceuthophilus guttulosus Walker (Orthoptera: Gryllacrididae: Rhaphidophorinae). Trans Am Entomol Soc 90:73–110

    Google Scholar 

  • Elias DO, Mason AC, Hoy RR (2004) The effect of substrate on the efficacy of seismic courtship signal transmission in the jumping spider Habronattus dossenus (Araneae: Salticidae). J Exp Biol 207:4105–4110

    PubMed  CrossRef  Google Scholar 

  • Fea M, Holwell G (2018) Exaggerated male legs increase mating success by reducing disturbance to females in the cave weta Pachyrhamma waitomoensis. Proc R Soc B 285:20180401

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs of insects. Adv Insect Physiol 27:1–228

    CrossRef  Google Scholar 

  • Frommolt K-H, Hoch H, Wessel A (2019) Call for the establishment of a VibroLibrary at the animal sound archive Berlin. In: Hill PSM, Lakes-Harlan R, Mazzoni V, Narins PM, Virant-Doberlet M, Wessel A (eds) Biotremology: studying vibrational behavior. Springer Nature, Cham, pp 479–483

    CrossRef  Google Scholar 

  • Gerhardt U (1913) Copulation und Spermatophoren von Grylliden und Locustiden I. Zool Jb Syst Geograph Biol Tiere 35:415–532

    Google Scholar 

  • Gogala M (2006) Vibratory signals produced by Heteroptera-Pentatomorpha and Cimicomorpha. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Press, New York, pp 275–295

    Google Scholar 

  • Günther K (1950) Ökologische und funktionelle Anmerkungen zur Frage des Nahrungserwerbes bei Tiefseefischen mit einem Exkurs über die ökologischen Zonen und Nischen. In: Grüneberg H, Ulrich W (eds) Moderne Biologie. Peters, Berlin, pp 55–93

    Google Scholar 

  • Haley EL, Gray DA (2012) Mating behavior and dual-purpose armaments in a camel cricket. Ethology 118:49–56

    CrossRef  Google Scholar 

  • Hasse A (1974) Lauterzeugungsmechanismus und Lautrezeption von Kleinzikaden. Naturwissenschaften 61:81–82

    CrossRef  Google Scholar 

  • Hoch H (2000) Acoustic communication in darkness. In: Wilkens H, Culver D, Humphreys WF (eds) Subterranean ecosystems, ecosystems of the world 30. Elsevier Science B.V., Amsterdam, pp 211–219

    Google Scholar 

  • Hoch H (2013) Trirhacus helenae sp.n., a new cave-dwelling planthopper from Croatia (Hemiptera: Fulgoromorpha: Cixiidae). Dtsch Entomol Z 60:155–161

    Google Scholar 

  • Hoch H, Howarth FG (1989a) Reductive evolutionary trends in two new cavernicolous species of a new Australian cixiid genus (Homoptera Fulgoroidea). Syst Entomol 14:179–196

    CrossRef  Google Scholar 

  • Hoch H, Howarth FG (1989b) Six new cavernicolous cixiid planthoppers in the genus Solonaima from Australia (Homoptera Fulgoroidea). Syst Entomol 14:377–402

    CrossRef  Google Scholar 

  • Hoch H, Howarth FG (1993) Evolutionary dynamics of behavioral divergence among populations of the Hawaiian cave-dwelling planthopper Oliarus polyphemus (Homoptera: Fulgoroidea: Cixiidae). Pac Sci 47:303–318

    Google Scholar 

  • Hoch H, Howarth FG (1999) Multiple cave invasions by species of the planthopper genus Oliarus in Hawaii (Homoptera: Fulgoroidea: Cixiidae). Zool J Linnean Soc 127:453–475

    CrossRef  Google Scholar 

  • Hoch H, Wessel A (2006) Communication by substrate-borne vibrations in cave planthoppers. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Press, Boca Raton, FL, pp 187–197

    Google Scholar 

  • Hoch H, Mühlethaler R, Wessel A (2013) Acoustic communication in the subtroglophile planthopper Trigonocranus emmeae Fieber, 1876 (Hemiptera: Fulgoromorpha: Cixiidae: Oecleini). Acta Mus Morav Sci Biol 98:155–162

    Google Scholar 

  • Howarth FG (1972) Cavernicoles in lava tubes on the island of Hawaii. Science 175:325–326

    CAS  PubMed  CrossRef  Google Scholar 

  • Howarth FG (1979) An inexpensive constant temperature chamber for field and laboratory use. Environ Entomol 8:236–237

    CrossRef  Google Scholar 

  • Howarth FG (1982) Bioclimatic and geologic factors governing the evolution and distribution of Hawaiian cave insects. Entomol Gen 8:17–26

    CrossRef  Google Scholar 

  • Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28:365–389

    CrossRef  Google Scholar 

  • Howarth FG, Moldovan OT (2018) The ecological classification of cave animals and their adaptations. In: Moldovan OT, Kovács L, Halse S (eds) Cave ecology, ecological studies 235. Springer Nature, Cham, Switzerland, pp 41–67

    Google Scholar 

  • Howarth FG, Hoch H, Wessel A (2019) Adaptive shifts. In: White WB, Culver DC, Pipan T (eds) Encyclopedia of caves, 3rd edn. Academic Press, Amsterdam, pp 47–55

    CrossRef  Google Scholar 

  • Hubbell TH, Norton RM (1978) The systematics and biology of the cave-crickets of the north American tribe Hadenoecini (Orthoptera Saltatoria: Esifera: Rhaphidophoridae: Dolichopodinae). Misc Publ Mus Zool Univ Michigan 156:1–124

    Google Scholar 

  • Hutchinson GE (1958) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    CrossRef  Google Scholar 

  • Ichikawa T (1976) Mutual communication by substrate vibration in the mating behavior of planthoppers (Homoptera: Delphacidae). Appl Entomol Zool 11:8–23

    CrossRef  Google Scholar 

  • Jeram S, Rössler W, Cokl A, Kalmring K (1995) Structure of atympanate tibial organs in legs of the cave-living Ensifera, Troglophilus neglectus (Gryllacrididae, Raphidophoridae). J Morphol 223:109–118

    CAS  PubMed  CrossRef  Google Scholar 

  • Juberthie C, Decu V (eds) (1994–2001) Encyclopaedia Biospeologica, Vol I–III. Société Internationale de Biospéologie, International Society for Subterranean Biology, Moulis & Bucarest

    Google Scholar 

  • Karaman I, Hammouti N, Patičević D, Kiefer A, Horvatović M Seitz A (2011) The genus Troglophilus Krauss, 1879 (Orthoptera: Rhaphidophoridae) in the West Balkans. Zool J Linnean Soc 163:1035–1063

    Google Scholar 

  • Kastberger G (1984) Gating of locomotor activity in the cave-cricket, Troglophilus cavicola. Physiol Entomol 9:297–314

    CrossRef  Google Scholar 

  • Kernan C, Hamel J, Iwan A, ter Hofstede H (2018) Calling, courtship, and post-mating tremulations in a Neotropical katydid. In: Hill PSM, Mazzoni V, Virant-Doberlet M (eds) Abstract Book, 2nd International Symposium on Biotremology, p 60. https://eventi.fmach.it/biotremology2018/Book-of-Abstracts

    Google Scholar 

  • Kevan DKM (1955) Méthodes inhabituelles de production de son chez les Orthoptères. In: Busnel RG (ed) Colloque Sur L’Acoustique Des Orthoptères. INRA, Paris, pp 103–141

    Google Scholar 

  • Lakes-Harlan R, Strauß J (2014) Functional morphology and evolutionary diversity of vibration receptors in insects. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, New York, pp 277–302

    Google Scholar 

  • Lavoie KH, Helf KL, Poulson TL (2007) The biology and ecology of north American cave crickets. J Cave Karst Stud 69:114–134

    Google Scholar 

  • Lipovšek S, Novak T, Janžekovič F, Pabst MA (2016) Role of the fat body in the cave crickets Troglophilus cavicola and Troglophilus neglectus (Rhaphidophoridae, Saltatoria) during overwintering. Arthr Struct Dev 40:54–63

    CrossRef  Google Scholar 

  • López-Rodríguez MJ, Tierno de Figueroa JS (2012) Life in the dark: on the biology of the cavernicolous stonefly Protonemura gevi (Insecta, Plecoptera). Am Nat 180:684–691

    PubMed  CrossRef  Google Scholar 

  • McDowell WM (2002) An ecological study of Metrosideros polymorpha gaud. (Myrtaceae) roots in lava tubes. Thesis, University of Hawai‘i at Manoa, USA

    Google Scholar 

  • Mebes H-D (1974) Zur Biophysik der Schallerzeugung bei Kleinzikaden: the biophysics of sound production of leafhoppers. Forma et Functio 7:95–118

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    CrossRef  Google Scholar 

  • Nishino H, Mukai H, Takanashi T (2016) Chordotonal organs in hemipteran insects: unique structures but conserved central organization revealed by comparative neuroanatomy. Cell Tissue Res 366:549–572

    PubMed  CrossRef  Google Scholar 

  • Novak T, Kuštor V (1982) Contribution à la connaissance de la biomasse et du bilan énergétique de la faune des entrées de grottes en Slovénie (Yugoslavie). Mém Biospéol 8:27–32

    Google Scholar 

  • Novak T, Kuštor V (1983) On Troglophilus (Rhaphidophoridae, Saltatoria) from North Slovenia (YU). Mém Biospéol 10:183–189

    Google Scholar 

  • Pehani Š, Virant-Doberlet M, Jeram S (1997) The life cycle of the cave cricket Troglophilus neglectus Krauss with a note on T. cavicola Kollar (Orthoptera: Rhaphidophoridae). Entomologist 116:224–238

    Google Scholar 

  • Pringle JWS (1957) The structure and evolution of the organs of sound-production in cicadas. Proc Linn Soc Lond 167:144–159

    CrossRef  Google Scholar 

  • Protas M, Jeffery WR (2012) Evolution and development in cave animals: from fish to crustaceans. Wiley Interdiscip Rev Dev Biol 1:823–845

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rampini M, Di Russo C, Pavesi F, Cobolli M (2013) New records of Aemodogryllinae (Orthoptera, Rhaphidophoridae) from caves of Laos with description of Eutachycines cassani Chopard male. J Trop Asian Entomol 2:37–43

    Google Scholar 

  • Rentz DCF (1980) A new family of ensiferous Orthoptera from the coastal sands of Southeast Queensland. Memoirs Queensland Mus 20:49–63

    Google Scholar 

  • Richards AM (1961) The life history of some species of Rhaphidophoridae (Orthoptera). Trans R Soc N Zeal 1:121–137

    Google Scholar 

  • Sbordoni V, de Matthaeis E, Cobolli Sbordoni M (1976) Phosphoglucomutase polymorphism and natural selection in populations of the cave cricket Dolichopoda geniculata. Z Zool Syst Evol 14:292–299

    CrossRef  Google Scholar 

  • Sket B (2008) Can we agree on an ecological classification of subterranean animals? J Nat Hist 42:1549–1563

    CrossRef  Google Scholar 

  • Soares D, Niemiller ML (2020) Extreme adaptations in caves. Anat Rec 303:15–23

    CrossRef  Google Scholar 

  • Song H, Béthoux O, Shin S, Donath A, Letsch H, Liu S, McKenna DD, Meng G, Misof B, Podsiadlowski L, Zhou X, Wipfler B, Simon S (2020) Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nat Commun 11:4939

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Stewart KW, Zeigler DD (1984) The use of larval morphology and drumming in Plecoptera systematics, and further studies of drumming behavior. Ann Limnol 20:105–114

    CrossRef  Google Scholar 

  • Strauß J (2017) The scolopidial accessory organs and Nebenorgans in orthopteroid insects: comparative neuroanatomy, mechanosensory function, and evolutionary origin. Arthropod Struct Dev 46:765–776

    PubMed  CrossRef  Google Scholar 

  • Strauß J, Stritih N (2016) The accessory organ, a scolopidial sensory organ, in the cave cricket Troglophilus neglectus (Orthoptera: Ensifera: Rhaphidophoridae). Acta Zool 97:187–195

    CrossRef  Google Scholar 

  • Strauß J, Stritih N (2017) Neuronal regression of internal leg vibroreceptor organs in a cave-dwelling insect (Orthoptera: Rhaphidophoridae: Dolichopoda araneiformis). Brain Behav Evol 89:104–116

    PubMed  CrossRef  Google Scholar 

  • Strauß J, Stritih N, Lakes-Harlan R (2014) The subgenual organ complex in the cave cricket Troglophilus neglectus (Orthoptera: Rhaphidophoridae): comparative innervation and sensory evolution. R Soc Open Sci 1:140240

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Stritih N (2009) Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing Ensiferan (Troglophilus neglectus, Rhaphidophoridae). J Comp Neurol 516:519–532

    PubMed  CrossRef  Google Scholar 

  • Stritih N (2014) Signaling by protrusive scent glands in cave crickets, Troglophilus neglectus Krauss (Orthoptera: Rhaphidophoridae), is primarily involved in male-male agonism. J Insect Behav 27:317–332

    CrossRef  Google Scholar 

  • Stritih N, Čokl A (2012) Mating behaviour and vibratory signalling in non-hearing cave crickets reflect primitive communication of Ensifera. PLoS One 7:47646

    CrossRef  CAS  Google Scholar 

  • Stritih N, Čokl A (2014) The role of frequency in vibrational communication of Orthoptera. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 375–393

    Google Scholar 

  • Stritih Peljhan N, Strauß J (2018) The mechanical leg response to vibration stimuli in cave crickets and implications for vibrosensory organ functions. J Comp Physiol A 204:687–702

    CAS  CrossRef  Google Scholar 

  • Stritih N, Strauß J (2015) Tremulation signalling and sensory neuroanatomy of cave crickets (Rhaphidophoridae: Troglophilus) are consistent with ancestral vibrational communication in Ensifera. Mitt Dtsch Ges Allg Angew Entomol 20:333–336

    Google Scholar 

  • Stritih N, Stumpner A (2009) Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. Zoology 112:48–68

    PubMed  CrossRef  Google Scholar 

  • Stritih N, Žunič Kosi A (2017) Olfactory signaling of aggressive intent in male-male contests of cave crickets (Troglophilus neglectus; Orthoptera: Rhaphidophoridae). PLoS One 12(11):e0187512

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Stritih-Peljhan N (2018) Cave cricket genus Troglophilus as a model for studying function and evolution of sensory systems and behaviour. Acta Entomol Slov 26:131–150

    Google Scholar 

  • Stritih-Peljhan N, Rühr PT, Buh B, Strauß J (2019) Low-frequency vibration transmission and mechanosensory detection in the legs of cave crickets. Comp Biochem Physiol A 233:89–96

    CAS  CrossRef  Google Scholar 

  • Strübing H (1960) Paarungsverhalten und Lautäusserung von Kleinzikaden, demonstriert an Beispielen aus der Familie der Delphacidae (Homoptera, Auchenorrhyncha). Proc XXI Int Congr Entomol Wien 11:12–14

    Google Scholar 

  • Strübing H, Rollenhagen T (1988) Ein neues Aufnehmersystem für Vibrationssignale und seine Anwendung auf Beispiele aus der Familie Delphacidae (Homoptera-Cicadina) – a new recording system for vibratory signals and its application to different species of the family Delphacidae (Homoptera-Cicadina). Zool Jahrb Allg Zool 92:245–268

    Google Scholar 

  • Sudhaus W (2008) Von der Evolutionsmorphologie zur Evolutionsökologie. Mitt Dtsch Ges Allg Angew Entomol 16:451–466

    Google Scholar 

  • Taylor SJ (2008) Cave adapted insects. In: Capinera JL (ed) Encyclopedia of entomology. Springer, Dordrecht, Netherlands, pp 803–806

    Google Scholar 

  • Taylor SJ, Krejca JK, Denight ML (2005) Foraging range and habitat use of Ceuthophilus secretus (Orthoptera: Rhaphidophoridae), a key trogloxene in Central Texas cave communities. Am Midl Nat 154:97–114

    CrossRef  Google Scholar 

  • Taylor SJ, Weckstein JD, Takiya DM, Krejca JK, Murdoch JD, Veni G, Johnson KP, Reddell JR (2007) Phylogeography of cave crickets (Ceuthophilus spp.) in Central Texas: a keystone taxon for the conservation and management of federally listed endangered cave arthropods. Ill Nat Hist Surv Tech Rep 2007(58):1–45

    Google Scholar 

  • Tinkham E, Rentz D (1969) Notes on the bionomics and distribution of the genus Stenopelmatus in Central California with description of a new species. Pan-Pac Entomol 45:4–14

    Google Scholar 

  • Tishechkin DY, Vedenina VY (2016) Acoustic signals in insects: a reproductive barrier and a taxonomic character. Entomol Rev 96:1127–1164

    CrossRef  Google Scholar 

  • Turner CL (2015) Breeding habits of Ceuthophilus latens, the camel cricket. Bull Wis Nat Hist Soc 13:32–41

    Google Scholar 

  • Vondráček K (1949) Příspěvek k poznání zvukového ústrojí u samcu křísu/contribution to the knowledge of the sound-producing apparatus in the males of the leafhoppers (Homoptera-Auchenorrhyncha). Acta Acad Sci Nat Moravo-Siles (Brno) 21:1–36

    Google Scholar 

  • Weckstein JD, Johnson KP, Murdoch JD, Krejca JK, Takiya DM, Veni G, Reddell JR, Taylor SJ (2016) Comparative phylogeography of two codistributed subgenera of cave crickets (Orthoptera: Rhaphidophoridae: Ceuthophilus spp.). J Biogeogr 43:1450–1463

    CrossRef  Google Scholar 

  • Weissmann MJ (1997) Natural history of the giant sand treader camel cricket, Daihinibaenetes giganteus Tinkam (Orthoptera: Rhaphidophoridae). J Orthoptera Res 6:33–48

    CrossRef  Google Scholar 

  • Wessel A, Hoch H (1999) Remane’s statistic species criterion applied to Hawaiian cave planthoppers. Reichenbachia 33:27–35

    Google Scholar 

  • Wessel A, Hoch H, Asche M, von Rintelen T, Stelbrink B, Heck V, Stone FD, Howarth FG (2013) Rapid species radiation initiated by founder effects in Hawaiian cave planthoppers. Proc Natl Acad Sci USA 110:9391–9396

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wessel A, Mühlethaler R, Hartung V, Kuštor V, Gogala M (2014) The Tymbal: evolution of a complex vibration-producing organ in the Tymbalia (Hemiptera excl. Sternorrhyncha). In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, New York, pp 395–444

    Google Scholar 

  • Young D (1970) The structure and function of a connective chordotonal organ in the cockroach leg. Philos Trans R Soc Lond B 256:401–426

    CrossRef  Google Scholar 

Download references

Acknowledgements

Cave cricket study: We thank Andrej Čokl and Meta Virant-Doberlet for their constant support of the work on Troglophilus cave crickets in Ljubljana, which they had initiated in the 1990s. Recording cave cricket behavior and signals would not have been possible without a great deal of assistance by the students Dajira Omerćehajić, Živa Justinek, and Nadja Pohl. We wish to thank Reinhard Lakes-Harlan for providing both an intellectual and laboratory home for comparative studies on insect sensory organs in Gießen. The work was financially supported by the Slovenian Research Agency (the research core funding P1–0255 and the research project J1–0823, for NSP). JS is supported by a grant from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, STR 1329/2-1).

Planthopper study: We would like to express our sincere mahalo to the many people and organizations who have helped to make the study on Hawaiian cave planthoppers possible by granting research permissions (Hawaii Volcanoes National Park, US Geological Survey, Department of Land and Natural Resources), and to landowners who trustfully permitted access to the caves on their properties, and to everyone who provided information on the location of lava tube entrances. Bishop Museum, and the University of Hawaii at Manoa, Honolulu, kindly and generously hosted us during research visits. We are deeply indebted to our colleagues, friends, and long-time caving buddies Francis G. Howarth, Portland, Oregon, formerly of Bishop Museum, and the late Fred D. Stone, formerly of Kurtistown, Hawaii Island, for sharing their enthusiasm as well as their expertise with us, and for providing their unconditional support during all phases of the project. Manfred Asche, Museum für Naturkunde, Berlin, not only accompanied the project from day one intellectually and logistically, he proved to be the much needed rock whenever the going (in- and outside the caves) got rough. Without him, our studies on Hawaiian cave planthoppers would not have been possible. Financial support was provided by various grants of the German Research Council (DFG) and The Nature Conservancy of Hawaii.

Data repository The original recordings of vibrational signals of Hawaiian planthoppers are deposited in the Animal Sound Archive (Tierstimmenarchiv) of the Museum of Natural History Berlin (Museum für Naturkunde Berlin); digital copies of the recordings and source documentation form the basis of a newly established VibroLibrary at the Animal Sound Archive (see Frommolt et al. 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Stritih-Peljhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Stritih-Peljhan, N., Strauß, J., Wessel, A., Hoch, H. (2022). Speleotremology: Ecology and Evolution of Vibrational Communication in Cavernicolous Insects. In: Hill, P.S.M., Mazzoni, V., Stritih-Peljhan, N., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Physiology, Ecology, and Evolution. Animal Signals and Communication, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-97419-0_13

Download citation