Skip to main content

Fast Calibration of Fault Injection Equipment with Hyperparameter Optimization Techniques

  • Conference paper
  • First Online:
Smart Card Research and Advanced Applications (CARDIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13173))

Abstract

Although fault injection is a powerful technique to exploit implementation weaknesses, this is not without limitations. An important preliminary step, based on rigorous calibration of the fault injection equipment, greatly affects the exploitability and repeatability of injected faults. The equipment parameter space is usually explored with random search, grid search, and more recently with the help of metaheuristic algorithms. In this article, we apply, for the first time, two recent hyperparameter optimization techniques to fault injection. We evaluate these optimization techniques on three different 32-bit microcontrollers, and find better glitch waveforms than with metaheuristic algorithms. In addition, we propose a two-stage optimization strategy under black-box conditions to reduce the dimensionality of the parameter space and speed up the equipment calibration. Finally, we apply this approach to bypass the code read protection of a built-in bootloader faster than with genetic algorithms.

This work is supported by the French National Research Agency in the framework of the “Investissements d’avenir” program (ANR-15-IDEX-02 and ANR-10-AIRT-05).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anceau, S., Bleuet, P., Clédière, J., Maingault, L., Rainard, J., Tucoulou, R.: Nanofocused X-ray beam to reprogram secure circuits. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 175–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_9

    Chapter  Google Scholar 

  2. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on RSA with CRT: concrete results and practical countermeasures. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_20

    Chapter  Google Scholar 

  3. Aziz, M.: On Multi-Armed Bandits Theory and Applications. PhD thesis, Ph. D. Thesis, Northeastern University, Boston, MA, USA (2019)

    Google Scholar 

  4. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characterization of the effects of clock glitches on 8-bit mcus. In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 105–114. IEEE (2011)

    Google Scholar 

  5. Bellman, R.E.: Adaptive Control Processes. Princeton University Press, Princeton (1861)

    Google Scholar 

  6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies-a comprehensive introduction. Natural Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  Google Scholar 

  8. Bozzato, C., Focardi, R., Palmarini, F.: Shaping the glitch: optimizing voltage fault injection attacks. IACR Trans. Cryptogr. Hard. Embed. Syst. 199–224, 2019 (2019)

    Google Scholar 

  9. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  10. Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch it if you can: parameter search strategies for successful fault injection. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 236–252. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_16

    Chapter  Google Scholar 

  11. Colombier, B., Menu, A., Dutertre, J.-M., Moëllic, P.-A., Rigaud, J.-B., Danger, J.-L.: Laser-induced single-bit faults in flash memory: instructions corruption on a 32-bit microcontroller. IACR Cryptol. ePrint Arch. 2018, 1042 (2018)

    Google Scholar 

  12. Courbon, F., Loubet-Moundi, P., Fournier, J.J.A., Tria, A.: Increasing the efficiency of laser fault injections using fast gate level reverse engineering. In: 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 60–63. IEEE (2014)

    Google Scholar 

  13. Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic transient faults injection on a hardware and a software implementations of AES. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 7–15. IEEE (2012)

    Google Scholar 

  14. Dureuil, L., Potet, M.-L., de Choudens, P., Dumas, C., Clédière, J.: From code review to fault injection attacks: filling the gap using fault model inference. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 107–124. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31271-2_7

    Chapter  Google Scholar 

  15. Gerlinsky, C.: Breaking code read protection on the nxp lpc-family microcontrollers (2017)

    Google Scholar 

  16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  17. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: An experimental investigation of model-based parameter optimisation: spo and beyond. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 271–278 (2009)

    Google Scholar 

  18. Karnin, Z., Koren, T., Somekh, O.: Almost optimal exploration in multi-armed bandits. In: International Conference on Machine Learning, pp. 1238–1246. PMLR (2013)

    Google Scholar 

  19. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multimedia Tools Appl. 80, 1–36 (2020)

    Google Scholar 

  20. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Lindauer, M., Eggensperger, K., Feurer, M., Falkner, S., Biedenkapp, A., Hutter, F.: Smac v3: algorithm configuration in python (2017). https://github.com/automl/SMAC3

  22. Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance. Physica A Stat. Mech. Appl. 391(6), 2193–2196 (2012)

    Article  Google Scholar 

  23. Madau, M., Agoyan, M., Maurine, P.: An EM fault injection susceptibility criterion and its application to the localization of hotspots. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS 2017. LNCS, vol. 10728, pp. 180–195. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75208-2_11

    Chapter  Google Scholar 

  24. Maldini, A., Samwel, N., Picek, S., Batina, L.: Optimizing electromagnetic fault injection with genetic algorithms. In: Breier, J., Hou, X., Bhasin, S. (eds.) Automated Methods in Cryptographic Fault Analysis, pp. 281–300. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11333-9_13

    Chapter  Google Scholar 

  25. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromagnetic fault injection: towards a fault model on a 32-bit microcontroller. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 77–88. IEEE (2013)

    Google Scholar 

  26. Obermaier, J., Tatschner, S.: Shedding too much light on a microcontroller’s firmware protection. In: 11th \(\{\)USENIX\(\}\) Workshop on Offensive Technologies (\(\{\)WOOT\(\}\) 2017) (2017)

    Google Scholar 

  27. Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault injection with a new flavor: memetic algorithms make a difference. In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 159–173. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_11

    Chapter  Google Scholar 

  28. Picek, S., Batina, L., Jakobović, D., Carpi, R.B.: Evolving genetic algorithms for fault injection attacks. In: 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1106–1111. IEEE (2014)

    Google Scholar 

  29. Riviere, L., Najm, Z., Rauzy, P., Danger, J. L., Bringer, J., Sauvage, L.: High precision fault injections on the instruction cache of armv7-m architectures. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 62–67. IEEE (2015)

    Google Scholar 

  30. Schellenberg, Markus F., et al.: On the complexity reduction of laser fault injection campaigns using obic measurements. In: 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 14–27. IEEE (2015)

    Google Scholar 

  31. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_2

    Chapter  Google Scholar 

  32. Trouchkine, T., Bouffard, G., Clédière, J.: Fault injection characterization on modern CPUs. In: Laurent, M., Giannetsos, T. (eds.) WISTP 2019. LNCS, vol. 12024, pp. 123–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41702-4_8

    Chapter  Google Scholar 

  33. Van den Herrewegen, J., Oswald, D., Garcia, F.D., Temeiza, Q.: Fill your boots: Enhanced embedded bootloader exploits via fault injection and binary analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 56–81, 2021 (2021)

    Google Scholar 

  34. Werner, V., Maingault, L., Potet, M.-L.: An end-to-end approach for multi-fault attack vulnerability assessment. In: 2020 Workshop on Fault Detection and Tolerance in Cryptography (FDTC), pp. 10–17. IEEE (2020)

    Google Scholar 

  35. Wu, L., Ribera, G., Beringuier-Boher, N., Picek, S.: A fast characterization method for semi-invasive fault injection attacks. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 146–170. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_8

    Chapter  Google Scholar 

  36. Yang, L., Shami, A.: On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415, 295–316 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Werner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Werner, V., Maingault, L., Potet, ML. (2022). Fast Calibration of Fault Injection Equipment with Hyperparameter Optimization Techniques. In: Grosso, V., Pöppelmann, T. (eds) Smart Card Research and Advanced Applications. CARDIS 2021. Lecture Notes in Computer Science(), vol 13173. Springer, Cham. https://doi.org/10.1007/978-3-030-97348-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97348-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97347-6

  • Online ISBN: 978-3-030-97348-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics