Skip to main content

Topology Optimization of MWCN

  • Chapter
  • First Online:
Next Generation Marine Wireless Communication Networks

Part of the book series: Wireless Networks ((WN))

  • 255 Accesses

Abstract

The foremost task of the next generation MWCN is network deployment and topology optimization. To this end, we firstly study a hierarchical network architecture of MWCN with support of edge computing which integrates the Underwater Acoustic Network (UAN), the sea-surface wireless network with edge computing, and the air wireless network. Based on the hierarchical network architecture, a multi-objective optimization framework is formulated to minimize the network deployment cost while maximizing the network lifetime by determining the deployment locations of network nodes, including Aerial Relay Nodes (ARNs), Edge Computing Nodes (ECNs), Sea-Surface Nodes (SSNs), and Underwater Relay Nodes (URNs), and the data transmission links between network nodes, subject to various constraints of the network topology, network connectivity, and the battery capacity. As the formulated optimization problem is known to be NP-hard, an Ant Colony based Efficient Topology Optimization (AC-ETO) algorithm is presented to solve the formulated Multi-objective Optimization (MO) problem in various network scenarios of different number of nodes. Extensive simulations are conducted to validate the performance of the proposed algorithm. The results show that the proposed algorithm approaches the optimal solution and outperform some existing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Jiang, J. Pan, K. Shao, T. Han, X. Guan, The state of the world ocean oil and gas resource exploration, China Pet. Ent. 2008,3,77-79.

    Google Scholar 

  2. F. Cui, S. Zhang, Ocean exploitation and environmental risk: an analysis of the Gulf of Mexico oil spill in USA. J. Ocean Univ. China (Soc. Sci. Ed.)2011, 5, 6-10.

    Google Scholar 

  3. M. Eichhorn, C. Ament, M. Jacob, T. Pfuetzenreuter, D. Karimanzira, K. Bley, M. Boer, H. Wehde, Modular AUV System with Integrated Real-Time Water Quality Analysis. Sensors 2018, 18, 1837.

    Google Scholar 

  4. G. Xu, W. Shen, X. Wang, Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey. Sensors 2014, 14, 16932-16954.

    Article  Google Scholar 

  5. G. Zappalà, G. Caruso, E. Crisafi, The “SAM” integrated system for coastal monitoring. Proc. of the 4th Int. Conf. On Environmental Problems in Coastal Regions, Coastal Environment IV, ed. C.A. Brebbia, WIT Press: Southampton, 2002, 341-350.

    Google Scholar 

  6. A. Abramic, N. M. Alzamora, D. R. Gonzalez, P. J. Ferrer, New methodology for analysing and increasing the cost-efficiency of environmental monitoring networks. Marine Pollution Bulletin 2014, 86, 161-173.

    Article  Google Scholar 

  7. R. G. Thippa, P. R. M. Swarna, M. Parimala, L. C. Chiranji, K. R. M. Praveen, S. Hakak, W. Z. Khan, A deep neural networks based model for uninterrupted marine environment monitoring. Computer Communications 2020, 157, 64-75.

    Article  Google Scholar 

  8. G. Zappalà, A software set for environment monitoring networks. Environ. Studies X 2004, 3-12.

    Google Scholar 

  9. C. Liu, Z. Zhao, W. Qu, T. Qiu, A. Sangaiah, A distributed node deployment algorithm for underwater wireless sensor networks based on virtual forces. J. Syst. Architect. 2019, 97, 9-19.

    Article  Google Scholar 

  10. D. Pompili, T. Melodia, I. F. Akyildiz, Three-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks. Ad Hoc Netw. 2009, 7, 778-790.

    Article  Google Scholar 

  11. H. Alhumyani, R. Ammar, A. Alharbi, S. Tolba, Efficient surface-level gateway deployment using underwater sensing and processing networks. In OCEANS 2015, Washington, Washington, DC, USA, 1-6.

    Google Scholar 

  12. Z. Zheng, L. X. Cai, R. Zhang, X. Shen, RNP-SA: Joint relay placement and sub-carrier allocation in wireless communication networks with sustainable energy. IEEE Trans. on Wireless Commun. 2012, 11, 3818-3828.

    Article  Google Scholar 

  13. S. Ibrahim, J. Cui, R. Ammar, Efficient surface gateway deployment for underwater sensor networks. In Proc. ISCC 2008, Marrakech, MAR. 2008, 1177-1182. doi: https://doi.org/10.1109/ISCC.2008.4625609.

  14. A. Khan, I. Ali, A. Ghani, N. Khan, M. Alsaqer, A. U. Rahman, Mahmood. H, Routing Protocols for Underwater Wireless Sensor Networks: Taxonomy, Research Challenges, Routing Strategies and Future Directions. Sensors 2018, 18, 1619.

    Google Scholar 

  15. I. F. Akyildiz, D. Pompili, T. Melodia, Underwater acoustic sensor networks: research challenges. Ad Hoc Netw. 2005, 3, 257-279.

    Article  Google Scholar 

  16. L. Wei, Z. Wang, J. Liu, Z. Peng, J. H. Cui, Power efficient deployment planning for wireless oceanographic systems. IEEE Syst. J. 2016, 1-11.

    Google Scholar 

  17. X. Han, J. A. Thomasson, Y. Xiang, H. Gharakhani, P. K. Yadav, W. L. Rooney, Multifunctional Ground Control Points with a Wireless Network for Communication with a UAV. Sensors 2019, 19, 2852.

    Article  Google Scholar 

  18. L. Arienzo, Green RF/FSO communications in cognitive relay-based space information networks for Maritime Surveillance. IEEE Trans. Cognitive Commun. and Netw. 2019, 5 1182-1193.

    Article  Google Scholar 

  19. X. Song, Y. Gong, D. Jin, Q. Li, Nodes deployment optimization algorithm based on improved evidence theory of underwater wireless sensor networks. Photonic Netw. Commun. 2018, 37, 224-232.

    Article  Google Scholar 

  20. P. Jiang, X. Wang, L. Jiang, Node deployment algorithm based on connected tree for underwater sensor networks. Sensors 2015, 15, 16763-16785.

    Article  Google Scholar 

  21. N. Celandronietal, E. Ferroet, et al., A survey of architectures and scenarios in satellite based wireless sensor networks: System design aspects. Int. J. Satell. Comm. N. 2013, 31, 1-38.

    Article  Google Scholar 

  22. D. Pompili, T. Melodia, I. F. Akyildiz, Deployment analysis in underwater acoustic wireless sensor networks. In Proc. WUWNet’06, Los Angeles, CA, USA, 48-55.

    Google Scholar 

  23. D. Martens, M. D. Backe, R. Haesen, J. Vanthienen, B. Baesens, Classification with ant colony optimization. IEEE Trans. Evol. Comput. 2007, 11, 651-665.

    Article  Google Scholar 

  24. X. Liu, A deployment strategy for multiple types of requirements in wireless sensor networks. IEEE T. Cybern. 2015, 45, 2364-2376.

    Article  Google Scholar 

  25. M. P. López, An ACOR-Based Multi-Objective WSN Deployment Example for Lunar Surveying. Sensors 2016, 16, 209.

    Article  Google Scholar 

  26. K. Watcharasitthiwat, P. Wardkein, Reliability optimization of topology communication network design using an improved ant colony optimization. Comput. Electr. Eng. 2009, 35, 730-747.

    Article  Google Scholar 

  27. B. Dengiz, F. Altiparmak, O. Belgin, Design of reliable communication networks: A hybrid ant colony optimization algorithm. IIE Transactions 2010, 42, 273-287.

    Article  Google Scholar 

  28. J. A. Ren, Y. Q. Tu, Implementation of Ad Hoc Network Routing Protocol Based on Ant Colony Optimization. Comp. Eng. 2012, 38, 114-118,122.

    Google Scholar 

  29. N. Kumar, G. D. C. Suresh, ACO-EEOLSR: enhanced energy model based link stability routing protocol in mobile ad hoc networks. J. Chin. Inst. Eng. 2016, 39, 192-200.

    Article  Google Scholar 

  30. D. S. Deif, Y. Gadallah, An ant colony optimization approach for the deployment of reliable wireless sensor networks. IEEE Access 2017, 5, 10744-10756.

    Article  Google Scholar 

  31. X. Shen, Y. Wang, S. Yang, Y. Liang, H. Li, Development of underwater gliders: an overview and prospect. J. Unmanned Undersea Syst. 2018, 26, 89-106.

    Google Scholar 

  32. T. Liu, Y. Xu, Y. Yin, Zh. Hu, X. Zhu, D. Li, Zh. Jiang, Long-term fixed-point vertical-section observation-type underwater robot. CN105644742A. 2016.

    Google Scholar 

  33. J. Gu, Zh. Zhang, Ch. Wang, L. Gao, B. Li, Influence of ocean current on motion parameters of underwater glider. J. Naval Univ. Eng. 2018, 30, 1-7.

    Google Scholar 

  34. D. Li, W. Chen, R. Huo, D. Liu, Survey on energy efficiency in wireless sensor networks. Comput. Sci. 2008, 35, 8-12. % er Science,} vol.35, no.11, pp.8-12,2008.

    Google Scholar 

  35. L. Berkhovskikh, Y. Lysanov, Fundamentals of ocean acoustics. Springer, 1982.

    Book  Google Scholar 

  36. W.R. Heinzelman, A. Chandrakasan, Balakrishnan. H, Energy-efficient communication protocol for wireless sensor networks. In Proc. HICSS 2000, IEEE, 4-7.

    Google Scholar 

  37. M. Ritesh, L. Sanjay, Distributed algorithms for maximum lifetime routing in wireless sensor networks. IEEE Trans. Wireless commun. 2006, 5, 2185-2193.

    Article  Google Scholar 

  38. X. Hou, B. Lin, R. X. He, X. Wang, Infrastructure planning and topology optimization for reliable mobile big data transmission under cloud radio access networks. Eurasip J. Wirel. Comm. 2016, 1, 119-129.

    Article  Google Scholar 

  39. H. Duan, D. Wang, J. Zhu, X. Huang, Development on ant colony algorithm theory and its application. Control Decis. 2004, 19, 1321-1320.

    MATH  Google Scholar 

  40. Y.R. Zhou, Runtime analysis of an ant colony optimization algorithm for TSP instances. IEEE Trans. Evol. Comput. 2009, 13, 1083-1092.

    Article  Google Scholar 

  41. Gurobi Optimizer 4.6, Gurobi Optimization Inc., Beaverton, Oregon, USA, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, B., Duan, J., Han, M., Cai, L.X. (2022). Topology Optimization of MWCN. In: Next Generation Marine Wireless Communication Networks. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-97307-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97307-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97306-3

  • Online ISBN: 978-3-030-97307-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics