Skip to main content

MitoDet: Simple and Robust Mitosis Detection

  • Conference paper
  • First Online:
Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis (MICCAI 2021)

Abstract

Mitotic figure detection is a challenging task in digital pathology that has a direct impact on therapeutic decisions. While automated methods often achieve acceptable results under laboratory conditions, they frequently fail in the clinical deployment phase. This problem can be mainly attributed to a phenomenon called domain shift. An important source of a domain shift is introduced by different microscopes and their camera systems, which noticeably change the colour representation of digitized images. In this method description, we present our submitted algorithm for the Mitosis Domain Generalization Challenge [1], which employs a RetinaNet [5] trained with strong data augmentation and achieves an F1 score of 0.7138 on the preliminary test set.

This work was supported by the Bavarian Ministry of Economic Affairs, Regional Develop- ment and Energy through the Center for Analytics - Data - Applications (ADA-Center) within “BAYERN DIGITAL II” and by the BMBF (16FMD01K, 16FMD02 and 16FMD03).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubreville, M., et al.: Mitosis domain generalization challenge (2021). https://doi.org/10.5281/zenodo.4573978

  2. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.: RandAugment: practical automated data augmentation with a reduced search space. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 18613–18624. Curran Associates, Inc. (2020)

    Google Scholar 

  3. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Li, C., Wang, X., Liu, W., Latecki, L.J.: DeepMitosis: mitosis detection via deep detection, verification and segmentation networks. Med. Image Anal. 45, 121–133 (2018). https://doi.org/10.1016/j.media.2017.12.002

    Article  Google Scholar 

  5. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  6. Marzahl, C., et al.: Deep learning-based quantification of pulmonary hemosiderophages in cytology slides. Sci. Rep. 10(1), 9795 (2020). https://doi.org/10.1038/s41598-020-65958-2

    Article  Google Scholar 

  7. Müller, S.G., Hutter, F.: TrivialAugment: tuning-free yet state-of-the-art data augmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 774–782 (2021)

    Google Scholar 

  8. Smith, L.N., Topin, N.: Super-convergence: very fast training of neural networks using large learning rates. In: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, vol. 11006, pp. 369–386. SPIE, May 2019. https://doi.org/10.1117/12.2520589

  9. Sohn, K., Zhang, Z., Li, C.L., Zhang, H., Lee, C.Y., Pfister, T.: A Simple Semi-Supervised Learning Framework for Object Detection. arXiv:2005.04757 [cs], December 2020

  10. Stacke, K., Eilertsen, G., Unger, J., Lundstrom, C.: Measuring domain shift for deep learning in histopathology. IEEE J. Biomed. Health Inform. 25(2), 325–336 (2021). https://doi.org/10.1109/JBHI.2020.3032060

    Article  Google Scholar 

  11. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning, pp. 6105–6114. PMLR, May 2019. ISSN 2640-3498

    Google Scholar 

  12. Tellez, D., et al.: Whole-slide mitosis detection in H&E breast histology using PHH3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans. Med. Imaging 37(9), 2126–2136 (2018). https://doi.org/10.1109/TMI.2018.2820199

    Article  Google Scholar 

  13. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves ImageNet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)

    Google Scholar 

  14. Zlocha, M., Dou, Q., Glocker, B.: Improving RetinaNet for CT lesion detection with dense masks from weak RECIST labels. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 402–410. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_45

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Dexl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dexl, J., Benz, M., Bruns, V., Kuritcyn, P., Wittenberg, T. (2022). MitoDet: Simple and Robust Mitosis Detection. In: Aubreville, M., Zimmerer, D., Heinrich, M. (eds) Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis. MICCAI 2021. Lecture Notes in Computer Science(), vol 13166. Springer, Cham. https://doi.org/10.1007/978-3-030-97281-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97281-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97280-6

  • Online ISBN: 978-3-030-97281-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics