Skip to main content

Ion Beam Sputtering Induced Glancing Angle Deposition

  • Chapter
  • First Online:
Low-Energy Ion Irradiation of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 324))

Abstract

The method of ion beam sputtering under glancing angle conditions in combination with an additional rotation of the sample holder allows the growth of almost arbitrarily designed nano- and microstructures of all material classes on surfaces. The self-shadowing and the surface diffusion essentially govern the structure evolution. It is demonstrated that by varying the particle incidence angle, the temperature, azimuthal rotation frequency, and the beam divergence of the sputtered particles, a wide variety of nanostructure morphologies (e.g., slanted and vertical columns, screws, spirals, or zigzag columns) can be generated. Ballistic simulations are preferably used to simulate the growth of these structures. It can be shown that two basic alternatives of ballistic simulations, off-lattice simulations and on-lattice simulations, are available to successfully model growth. A remarkable result of all experimental investigations and computer simulations is that the column tilt angle is always smaller than the incidence angle. Various explanations are known to explain this fact. These models will be presented and it will be shown that especially the competition model is able to describe a relation between the tilt angle and the angle of incidence for the complete range of material incidence angles. For various applications, patterning of the substrate prior to growth is required to fabricate arrays for highly regular nanostructures. This fabrication is demonstrated and the application of these structures for the realization of biosensors and magnetic nanotubes is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. van Kranenburg, C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data. Mater. Sci. Eng. R 11, 295–354 (1994)

    Article  Google Scholar 

  2. A. Lakhtakia, R. Messier, Sculptured thin films: nanoengineered morphology and optics (SPIE Press, Bellingham, 2005)

    Book  Google Scholar 

  3. T. Karabacak, T.-M. Lu, Shadowing growth and physical self-assembly of 3D columnar structures, in Handbook of Theoretical and Computational Nanotechnology, ed. by M. Rieth, W. Schommers (American Scientific Publishers, Stevenson Ranch, 2005), Chap. 69, p. 729

    Google Scholar 

  4. M.M. Hawkeye, M.J. Brett, Glancing angle deposition: fabrication, properties, and applications of micro-and nanostructured thin films. J. Vac. Sci. Technol. A 25, 1317–1335 (2007)

    Article  CAS  Google Scholar 

  5. M.T. Taschuk, M.M. Hawkeye, M.J. Brett, Glancing angle deposition, in Handbook of deposition technologies for films and coatings, ed. by P.M. Martin, (Elsevier, 2010), pp. 621–678

    Google Scholar 

  6. M.M. Hawkeye, M.T. Taschuk, M.J. Brett, Glancing angle deposition of thin films: engineering the nanoscale (Wiley, New York, 2014)

    Google Scholar 

  7. A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progr. Mater. Sci. 76, 59–153 (2016)

    Article  CAS  Google Scholar 

  8. C. Grüner, I. Abdulhalim, B. Rauschenbach, Glancing angle deposition for biosensing applications, in Encyclopedia of Interfacial Chemistry, ed. by K. Wandelt (Elsevier, Oxford, 2018), pp. 129–137

    Google Scholar 

  9. B.A. Movchan, A.V. Demchishin, Study of structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide in vacuum. Fiz. Metal. Metalloved. 28, 653–660 (1969)

    CAS  Google Scholar 

  10. A. Kundt, Ueber Doppelbrechung des Lichtes in Metallschichten, welche durch Zerstäuben einer Kathode hergestellt sind. Ann. Phys. Chem. 263, 59–71 (1886)

    Article  Google Scholar 

  11. H. König, G. Helwig, Über die Struktur schräg aufgedampfter Schichten und ihr Einfluss auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten. Optik 6, 111–124 (1950)

    Google Scholar 

  12. J.M. Nieuwenhuizen, H.B. Haanstra, Microfractography of thin films. Philips Tech. Rev. 27, 87–91 (1966)

    Google Scholar 

  13. N.O. Young, J. Kowal, Optically active fluorite films. Nature 183, 104–105 (1959)

    Article  CAS  Google Scholar 

  14. K. Robbie, M.J. Brett, A. Lakhtakia, First thin-film realization of a helicoidal bianisotropic medium. J. Vac. Sci. Technol. 13, 2991–2993 (1995)

    Article  CAS  Google Scholar 

  15. K. Robbie, L.J. Friedrich, S.K. Dew, T. Smy, M.J. Brett, Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol. 13, 1032–1035 (1995)

    Article  CAS  Google Scholar 

  16. K. Robbie, M.J. Brett, A. Lakhtakia, Chiral sculptured thin films. Nature 384, 616–616 (1996)

    Article  CAS  Google Scholar 

  17. C. Patzig, A. Miessler, T. Karabacak, B. Rauschenbach, Arbitrarily shaped Si nanostructures by glancing angle ion beam sputter deposition. Phys. Stat. Sol. B 247, 1310–1321 (2010)

    Article  CAS  Google Scholar 

  18. C. Patzig, B. Rauschenbach, Temperature effect on the glancing angle deposition of Si sculptured thin films. J. Vac. Sci. Technol. A 26, 881–886 (2008)

    Article  CAS  Google Scholar 

  19. B. Rauschenbach, C. Patzig, Periodic nanoscale Si structures by ion beam induced glancing angle deposition, in Proceedings of IEEE 2nd International Nanoelectronic Conference, Shanghai (2008), pp. 1084–1088

    Google Scholar 

  20. C. Patzig, B. Rauschenbach, W. Erfurth, A. Milenin, Ordered silicon nanostructures by ion beam induced glancing angle deposition. J. Vac. Sci. Technol. B 25, 833–838 (2007)

    Article  CAS  Google Scholar 

  21. L. Abelmann, C. Lodder, Oblique evaporation and surface diffusion. Thin Solid Films 305, 1–21 (1997)

    Article  CAS  Google Scholar 

  22. K. Hara, M. Kamiya, T. Hashimoto, K. Okamoto, H. Fujiwara, Oblique-incidence anisotropy of the iron films evaporated at low substrate temperatures. J. Mag. Mag. Mat. 73, 161–166 (1988)

    Article  CAS  Google Scholar 

  23. S. Liedtke-Grüner, in Growth of obliquely deposited metallic thin films. Dissertation, University Leipzig (2019)

    Google Scholar 

  24. T. Brown, K. Robbie, Observations of self-assembled microscale triangular-shaped spikes in copper and silver thin films. Thin Solid Films 531, 103–112 (2013)

    Article  CAS  Google Scholar 

  25. K. Itoh, F. Ichikawa, Y. Takahashi, K. Tsutsumi, Y. Noguchi, K. Okamoto, Columnar grain structure in cobalt films evaporated obliquely at low substrate temperatures. Jpn. J. Appl. Phys. 45, 2534–2538 (2006)

    Article  CAS  Google Scholar 

  26. E. Schubert, J. Fahlteich, Th. Höche, G. Wagner, B. Rauschenbach, Chiral silicon nanostructures. Nucl. Instr. Meth in Phys. Res. B 244, 40–44 (2006)

    Google Scholar 

  27. M. Malec, R.F. Egerton, Observations of the microscopic growth mechanism of pillars and helices formed by glancing-angle thin-film deposition. J. Vac. Sci. Technol. A 19, 158–166 (2001)

    Article  Google Scholar 

  28. Z. Dohnálek, G.A. Kimmel, D.E. McCready, J.S. Young, A. Dohnálková, R.S. Smith, B. D. Kay, Structural and chemical characterization of aligned crystalline nanoporous MgO films grown via reactive ballistic deposition. J. Phys. Chem. B 106, 3526–3529

    Google Scholar 

  29. K.M. Krause, D.W. Dick, M. Malac, M.J. Brett, Taking, a little off the top: nanorod arry morphology and growth studied by focused ion beam topography. Langmuir 26, 17558–21756 (2010)

    Article  CAS  Google Scholar 

  30. S. Liedtke, C. Grüner, A. Lotnyk, B. Rauschenbach, Glancing angle deposition of sculptured thin metal films at room temperature.Nanotechnology 28, 385604 (2017)

    Google Scholar 

  31. M. J. Vold, A numerical approach to the problem of sediment volume. J. Colloid Sci. 14, 168174 (1959) and Sediment volume and structure in dispersions of anisometric particles. J. Phys. Chem. 63, 1608–1612 (1959)

    Google Scholar 

  32. P. Meakin, Models for colloidal aggregation. Ann. Rev. Phys. Chem. 39, 237–267 (1988)

    Article  CAS  Google Scholar 

  33. P. Meakin, R. Jullien, Restructuring effects in the rain model for random deposition. J. Physique 48, 1651–1662 (1987)

    Article  Google Scholar 

  34. P. Meakin, R. Jullien, Simple ballistic deposition models for the formation of thin films. Proc. SPIE 0821 (1988)

    Google Scholar 

  35. M. Teschner, S. Kimmerle, B. Heidelberger G. Zachmann L. Raghupathi A. Fuhrmann, M.‐P. Cani, F. Faure, N. Magnenat‐Thalmann, W. Strasser, P. Volino Collision detection for deformable objects. Computer Graphics Forum 24, 61–81 (2005)

    Google Scholar 

  36. D. Henderson, M.H. Brodsky, P. Chaudhari, Simulation of structural anisotropy and void formation in amorphous thin films. Appl. Phys. Lett. 25, 641–643 (1974)

    Article  CAS  Google Scholar 

  37. A.G. Dirks, H.A. Leamy, Columnar microstructure in vapor-deposited thin films. Thin Solid Films 47, 219–233 (1977)

    Article  CAS  Google Scholar 

  38. H.A. Leamy, G.H. Gilmer, A.G. Dirks, The microstructure of vapor deposited thin films, in Current Topics in Materials Science, ed. by E. Kaldis, Vol. 6 (North-Holland, 1980), pp. 301–344

    Google Scholar 

  39. P. Ramanlal, L.M. Sander, Theory of ballistic aggregation. Phys. Rev. Lett. 54, 1828–1831 (1985)

    Article  CAS  Google Scholar 

  40. R. Jullien, P. Meakin, Simple three-dimensional models for ballistic deposition with restructuring. Europhys. Lett. 4, 1385–1390 (1987)

    Article  CAS  Google Scholar 

  41. C. Grüner, S. Liedtke, J. Bauer, S.G. Mayr, B. Rauschenbach, Morphology of thin films formed by oblique physical vapor deposition. ACS Appl. Nano Mater. 1, 1370–1376 (2018)

    Article  Google Scholar 

  42. P. Meakin, P. Ramanlal, L.M. Sander, R.C. Ball, Ballistic deposition on surfaces. Phys Rev. A 34, 5091–5103 (1986)

    Article  CAS  Google Scholar 

  43. D.X. Ye, T.M. Lu, Ballistic aggregation on two-dimensional arrays of seeds with oblique incident flux: growth model for amorphous Si on Si. Phys. Rev. B 75, 23540 (2007)

    Google Scholar 

  44. C. Patzig, T. Karabacak, B. Fuhrmann, B. Rauschenbach, Glancing angle sputter deposited nanostructures on rotating substrates: experiments and simulations. J. Appl. Phys. 104, 094318 (2008)

    Google Scholar 

  45. T. Karabacak, Y.-P. Zhao, G.-C. Wang, T.-M. Lu, Growth-front roughening in amorphous silicon films by sputtering. Phys. Rev. B 64, 085322 (2001)

    Google Scholar 

  46. D.X. Ye, T.M. Lu, Fanlike aggregations on seeds by parallel ballistic flux: experimental results and Monte Carlo simulations of the growth of three-dimensional Si structures. Phys. Rev. B 75, 115420 (2007)

    Google Scholar 

  47. B. Tanto, C.F. Doiron, T.M. Lu, Large artificial anisotropic growth rate in on-lattice simulation of obliquely deposited nanostructures. Phys. Rev. E 83, 016703 (2011)

    Google Scholar 

  48. C. Grüner, S. Grüner, S.G. Mayr, B. Rauschenbach, Avoiding anisotropies in on-lattice simulations of ballistic deposition. Phys. Stat. Sol. (b) 258, 2000036 (2021)

    Google Scholar 

  49. T. Karabacak, J.P. Singh, Y.-P. Zhao, G.C. Wang, T.-M. Lu, Scaling during shadowing growth of isolated nanocolumns. Phys. Rev. B 68, 125408 (2003)

    Google Scholar 

  50. T. Karabacak, G.-C. Wang, T.-M. Lu, Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition. J. Vac. Sci. Technol. A 22, 1778–1784 (2004)

    Article  CAS  Google Scholar 

  51. C. Grüner, in Oblique angle deposition of thin films—theory, modelling and application. Dissertation, University Leipzig (2019)

    Google Scholar 

  52. P.A. Sánchez, T. Sintes, J.H. E. Cartwright, O. Piro, Influence of microstructure on the transitions between mesoscopic thin-film morphologies in ballistic-diffusive models. Phys. Rev. E 81, 011140 (2010)

    Google Scholar 

  53. T. Smy, D. Vick, M.J. Brett, S.K. Dew, A.T. Wu, J.C. Sit, K.D. Harris, Three-dimensional simulation of film microstructure produced by glancing angle deposition. J. Vac. Sci. Technol. A 18, 2507–2512 (2000)

    Article  CAS  Google Scholar 

  54. M. Suzuki, Y. Taga, Numerical study of the effective surface area of obliquely deposited thin films. J. Appl. Phys. 90, 5599–5606 (2001)

    Article  CAS  Google Scholar 

  55. Y. Saito, S. Omura, Domain competition during ballistic deposition: Effect of surface diffusion and surface patterning. Phys. Rev. E 84, 021601 (2011)

    Google Scholar 

  56. W. Jost, Diffusion in Solids, Liquids Gases (Academic Press, New York, 1970)

    Google Scholar 

  57. S. Müller-Pfeiffer, H. van Kraneneburg, J.C. Lodder, A two-dimensional Monte Carlo model for thin film growth by oblique evaporation: simulation of two-component systems for the example of Co-Cr. Thin Solid Films 213, 143–153 (1992)

    Article  Google Scholar 

  58. G. Ehrlich, Molecular processes at the gas-solid interface, in Structure and Properties of Thin Films, ed. by C.A. Neugebauer, J.B. Newkirk, D.A. Vermilyea (Wiley, New York, 1959), pp. 423–475

    Google Scholar 

  59. G. Neumann, W. Hirschwald, Mechanism of surface self diffusion. Z. Phys. Chem. B 81, 63–176 (1972)

    Google Scholar 

  60. S. Liedtke-Grüner, C. Grüner, A. Lotnyk, J.W. Gerlach, B. Rauschenbach, Biaxially textured titanium thin films by oblique angle deposition: conditions and growth mechanisms. Phys. Stat. Sol. (a) 217, 1900636 (2019)

    Google Scholar 

  61. K.-H. Müller, Dependence of thin-film microstructure on deposition rate by means of a computer simulation. J. Appl. Phys. 58, 2573–2576 (1985)

    Article  Google Scholar 

  62. D. Bensimon, B. Shraiman, S. Liang, On the ballistic model of aggregation. Phys Lett. 102 A, 238–240 (1984)

    Google Scholar 

  63. M. Pelliccione, T.-M. Lu, Self-shadowing in ballistic fan formation from point seeds. Phys. Rev. B 75, 245431 (2007)

    Google Scholar 

  64. B. Tanto, G. Ten Eyck, T.-M. Lu, A model for column angle evolution during oblique angle deposition. J. Appl. Phys. 108, 026107 (2010)

    Google Scholar 

  65. S. Liang, L.P. Kadanoff, Scaling in a ballistic aggregation model. Phys. Rev. A 3, 2628–2630 (1985)

    Article  Google Scholar 

  66. J. Krug, P. Meakin, Columnar growth in oblique incidence ballistic deposition: faceting, noise reduction, and mean-field theory. Phys. Rev. A 43, 900–919 (1991)

    Article  CAS  Google Scholar 

  67. F. Porcú, F. Prodi, Ballistic accretion on seeds of different sizes. Phys. Rev. A 44, 8313–8315 (1991)

    Article  Google Scholar 

  68. A.V. Limaye, R.E. Amritkar, Theory of growth of ballistic aggregates. Phys. Rev. A 34, 5085–5090 (1986)

    Article  CAS  Google Scholar 

  69. A. van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22, 267–288 (1967)

    Google Scholar 

  70. B. Rauschenbach, C. Patzig, Dünne Schichten durch Deposition unter streifenden Einfall. Vakuum für Forschung & Techn. 22, 14–19 (2010)

    Article  CAS  Google Scholar 

  71. A. Amassian, K. Kaminska, M. Suzuki, L. Martinu, K. Robbie, Onset of shadowing-dominated growth in glancing angle deposition. Appl. Phys. Lett. 91, 173114 (2007)

    Google Scholar 

  72. C. Patzig, in Glancing angle deposition of silicon nanostructures by ion beam sputtering. Dissertation, University Leipzig (2009)

    Google Scholar 

  73. C. Khare, J.W. Gerlach, M. Weise, J. Bauer, T. Höche, B. Rauschenbach, Growth temperature altered morphology of Ge nanocolumns. Phys. Stat. Sol. A 208, 851–856 (2011)

    CAS  Google Scholar 

  74. C. Khare, J.W. Gerlach, T. Höche, B. Fuhrmann, H.S. Leipner, B. Rauschenbach, Effects of annealing on arrays of Ge nanocolumns formed by glancing angle deposition. Appl. Surf. Sci. 258, 9762–9769 (2012)

    Article  CAS  Google Scholar 

  75. C. Khare, J.W. Gerlach, B. Fuhrmann, B. Rauschenbach, Influence of substrate temperature on glancing angle deposited Ag nanorods. J. Vac. Sci. Technol. A 28, 1002–1009 (2010)

    Article  CAS  Google Scholar 

  76. C. Khare, Gowth of Ge, Ag and multilayered Si/Ge nanostructures by ion beam sputter glancing angle deposition. Disserataion, University Leipzig (2012)

    Google Scholar 

  77. M.O. Jensen, M.J. Brett, Porosity engineering in glancing angle deposition thin films. Appl. Phys. A 80, 763–768 (2005)

    Article  CAS  Google Scholar 

  78. D.X. Ye, T. Karabacak, B.K. Lim, G.C. Wang, T.M. Lu, Growth of uniformly aligned nanorod arrays by oblique angle deposition with two-phase substrate rotation. Nanotechnology 15, 817–821 (2004)

    Article  CAS  Google Scholar 

  79. C. Khare, R. Fechner, J. Bauer, M. Weise, B. Rauschenbach, Glancing angle deposition of Ge nanorod arrays on Si patterned substrates. J. Vac. Sci. Technol. A 29, 041503 (2011)

    Google Scholar 

  80. C. Khare, B. Fuhrmann, H.S. Leipner, J. Bauer, B. Rauschenbach, Optimized growth of Ge nanorod arrays on Si patterns. J. Vac. Sci. Technol. A 29, 051501 (2011)

    Google Scholar 

  81. S. Liedtke-Grüner, C. Grüner, A. Lotnyk, J.W. Gerlach, M. Mensing, P. Schumacher, B. Rauschenbach, Crystallinity and texture of molybdenum thin films obliquely deposited at room temperature. Thin Solid Films 685, 6–16 (2019)

    Article  Google Scholar 

  82. S. Lichter, J. Chen, Model for columnar microstructure of thin solid films. Phys. Rev. Lett. 56, 1396–1399 (1986)

    Article  CAS  Google Scholar 

  83. R. Fiedler, G. Schirmer, Säulenwachstum bei aufgedampften Schichten. Thin Solid Films 167, 281–289 (1988)

    Article  CAS  Google Scholar 

  84. Y. D. Fan, X. P. Li, J. Yang, J. P. Li, Microscopic model for columnar growth of thin films. Phys. Stat. Sol. (a) 134, 157–166 (1992)

    Google Scholar 

  85. R.N. Tait, T. Smy, M.J. Brett, Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226, 196–201 (1993)

    Article  CAS  Google Scholar 

  86. Hodgkinson, I., Q.h. Wu, J. Hazel, Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl. Optics 37, 2653–2659 (1998)

    Google Scholar 

  87. H. Zhu, W. Cao, G. K. Larsen, R. Toole, Y. Zhao, Tilting angle of nanocolumnar films fabricated by oblique angle deposition. J. Vac. Sci. Technol. B 30, 030606 (2012)

    Google Scholar 

  88. D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, E. F. Schubert, Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition. Appl. Phys. Lett. 93, 101914 (2008)

    Google Scholar 

  89. R. Messier, T. Gehrke, C. Frankel, V.C. Venugopal, W. Otaño, A. Lakhtakia, Engineered sculptured nematic thin films. J. Vac. Sci. Techn. 15, 2148–2152 (1994)

    Article  Google Scholar 

  90. M. Malac, R.F. Egerton, M.J. Brett, B. Dick, Fabrication of submicrometer regular arrays of pillars and helices. J. Vac. Sci. Technol. B 17, 2671–2674 (1999)

    Article  CAS  Google Scholar 

  91. C. Patzig, C. Khare, B. Fuhrmann, B. Rauschenbach, Periodically arranged Si nanostructures by glancing angle deposition on patterned substrates. Phys. Stat. Sol. (b) 247, 1322–1344 (2010)

    Google Scholar 

  92. D.-X. Ye, C. L. Ellison, B.-K. Lim, T.-M. Lu, Shadowing growth of three-dimensional nanostructures on finite size seeds. J. Appl. Phys. 103, 103531 (2008)

    Google Scholar 

  93. D.-X. Ye, in Shadowing growth by physical vapor deposition. Dissertation, Rensselaer Polytechnic Institute Troy, New York (2006)

    Google Scholar 

  94. M.W. Horn, M.D. Pickett, R. Messier, A. Lakhtakia, Blending of nanoscale and microscale in uniform large–area sculptured thin–film architectures. Nanotechnology 15, 303–310 (2004)

    Article  CAS  Google Scholar 

  95. S. Kesapragada, P. Sotherland, D. Gall, Ta nanotubes grown by glancing angle deposition. J. Vac. Sci. Technol. B 26, 678–681 (2008)

    Article  CAS  Google Scholar 

  96. M. Summers, B. Djurfors, M. Brett, Fabrication of silicon submicrometer ribbons by glancing angle deposition. J. Micro/Nanolithography, MEMS and MOEMS 4, 033012 (2005)

    Google Scholar 

  97. C. Patzig, B. Rauschenbach, B. Fuhrmann, H.S. Leipner, Growth of Si nanorods in honeycomb and hexagonal-closed-packed arrays using glancing angle deposition, J. Appl. Phys. 103, 024313 (2008)

    Google Scholar 

  98. C.M. Zhou, D. Gall, Growth competition during glancing angle deposition of nanorod honeycomb arrays. Appl. Phys. Lett. 90, 093103 (2007)

    Google Scholar 

  99. C. Zhou, D. Gall, Surface patterning by nanosphere lithography for layer growth with ordered pores. Thin Solid Films 516, 433–437 (2007)

    Article  CAS  Google Scholar 

  100. A. Pawar, I. Kretzschmar, Patchey particles by glancing angle deposition. Langmuir 24, 355–358 (2008)

    Article  CAS  Google Scholar 

  101. B. Dick, J.C. Sit, M.J. Brett, I.M.N. Votte, C.W.M. Bastiaansen, Embossed polymetric relief structures as a template for the growth of periodic inorganic microstructures. Nano Lett. 1, 71–73 (2001)

    Article  CAS  Google Scholar 

  102. S. Krishnamoorthy, C. Hinderling, H. Heinzelmann, Nanoscale patterning with block copolymers. Mater. Today 9, 40–47 (2006)

    Article  CAS  Google Scholar 

  103. M. Mäder, T. Höche, J.W. Gerlach, R. Böhme, K. Zimmer, B. Rauschenbach, Large area metal dot matrices made by diffraction mask projection laser ablation. Phys. Stat. Sol. (RRL) 2, 34–36 (2008)

    Google Scholar 

  104. M.O. Jensen, M.J. Brett, Periodically structured glancing angle depsoition thin films. IEEE Trans. Nanotechnol. 4, 269–277 (2005)

    Article  Google Scholar 

  105. E. Main, T. Karabacak, T.M. Lu, Continuum model for nanocolumn growth during oblique angle deposition. J. Appl. Phys. 95, 4346–4351 (2004)

    Article  CAS  Google Scholar 

  106. M. Weise, in Dreidimensionale Germanium- und Siliziumstrukturen. Unpublished Diploma thesis, Universität Leipzig (2010)

    Google Scholar 

  107. B. Dick, M.J. Brett, T. Smy, M. Belov, M.R. Freeman, Periodic submicrometer structures by sputtering. J. Vac. Sci. Technol. B 19, 1813–1819 (2001)

    Article  CAS  Google Scholar 

  108. J. Bauer, M. Weise, B. Rauschenbach, N. Geyer, B. Fuhrmann, Shape evolution in glancing angle deposition of arranged germanium nanocolumns. J. Appl. Phys. 111, 104309 (2012)

    Google Scholar 

  109. I. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28, 214–242 (2008)

    Article  Google Scholar 

  110. A. Shalabney, I. Abdulhalim, Sensitivity-enhancement methods for surface plasmon sensors. Laser & Photonics Rev. 5, 571–606 (2011)

    Article  CAS  Google Scholar 

  111. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)

    Article  CAS  Google Scholar 

  112. M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)

    Article  CAS  Google Scholar 

  113. S.K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, I. Abdulhalim, SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin. Small 10, 579–3587 (2014)

    Article  Google Scholar 

  114. I. Abdulhalim, A. Karabchevsky, C. Patzig, B. Rauschenbach, B. Fuhrmann, E. Eltzov, R. Marks, J. Xu, F. Zhang, A. Lakhtakia, Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water. Appl. Phys. Lett. 94, 063106 (2009)

    Google Scholar 

  115. Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, Arrays of aligned, single crystalline silver nanorods for trace amount detection. J. Phys. D: Appl. Phys. 41, 152007 (2008)

    Google Scholar 

  116. J.R. Sánchez-Valencia, J. Toudert, A. Borras, C. López-Santos, A. Barranco, I.O. Feliu, A.R. González-Elipe, Tunable in-plane optical anisotropy of Ag nanoparticles deposited by DC sputtering onto SiO2 nanocolumnar films. Plasmonics 5, 241–250 (2010)

    Article  Google Scholar 

  117. A. Karabchevsky, C. Khare, B. Rauschenbach, I. Abdulhalim, Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films, J. Nanophotonics 6, 061508 (2012)

    Google Scholar 

  118. S.K. Srivastava, C. Grüner, D. Hirsch, B. Rauschenbach, I. Abdulhalim, Enhanced intrinsic fluorescence from carboxidized nano-sculptured thin films of silver and their application for label free dual detection of glycated hemoglobin. Opt. Express 25, 4761–4772 (2017)

    Article  CAS  Google Scholar 

  119. S.Y. Song, Y.D. Han, Y.M. Park, C.Y. Jeong, Y.J. Yang, M.S. Kim, Y. Ku, H.C. Yoon, Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface. Biosens. Bioelectron. 35, 355–362 (2012)

    Article  CAS  Google Scholar 

  120. Y. Wang, L. Wu, T.I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, B. Liedberg, Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing. Nanoscale 8, 8008–8016 (2016)

    Article  CAS  Google Scholar 

  121. S.K. Srivastava, H.B. Hamo, A. Kushmaro, R.S. Marks, C. Grüner, B. Rauschenbach, I. Abdulhalim, Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films. The Analyst 140, 3201–3209 (2015)

    Google Scholar 

  122. B. Van Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel, R. Blust, J. Robbens, Recent advances in recognition elements of food and environmental biosensors: a review. Biosens. Bioelectron. 26, 1178–1194 (2010)

    Article  Google Scholar 

  123. O. Albrecht, R. Zierold, C. Patzig, J. Bachmann, C. Sturm, B. Rheinländer, M. Grundmann, D. Görlitz, B. Rauschenbach, K. Nielsch, Tubular magnetic nanostructures based on glancing angle deposited templates and atomic layer deposition. Phys. Stat. Sol. (b) 247, 1365–1371 (2010)

    Google Scholar 

  124. O. Albrecht, R. Zierold, S. Allende, J. Escrig, C. Patzig, B. Rauschenbach, K. Nielsch, D. Görlitz, Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes, J. Appl. Phys. 109, 093910 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Rauschenbach .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauschenbach, B. (2022). Ion Beam Sputtering Induced Glancing Angle Deposition. In: Low-Energy Ion Irradiation of Materials. Springer Series in Materials Science, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-97277-6_11

Download citation

Publish with us

Policies and ethics