Skip to main content

Decompositions in Quantum Mechanics—An Overview

  • Conference paper
  • First Online:
Credible Asset Allocation, Optimal Transport Methods, and Related Topics (TES 2022)

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 429))

Included in the following conference series:

Abstract

There is current interest in using ideas from quantum mechanics in the study of economics. We give an overview of an approach to quantum mechanics rooted not necessarily in Hilbert space, but in the primitive mathematical idea of direct products. This approach includes the standard von Neumann Hilbert space approach. It provides a conceptually simpler understanding of issues from standard quantum mechanics, and offers possibilities beyond the standard Hilbert space formulation. These further possibilities may be of particular interest in consideration of economics where the aim is to exploit quantum principles rather than specific physical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bingham, N. H., & Ostaszewski, A. J. (2010). Normed versus topological groups: Dichotomy and duality. Dissertationes Mathematicae (Rozprawy Matematyczne), 472, 138.

    Google Scholar 

  2. Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37(4), 823–843.

    Google Scholar 

  3. Burris, S., & Sankappanavar, H. P. (1981). A course in universal algebra. In Graduate texts in mathematics (Vol. 78). Springer.

    Google Scholar 

  4. Dirac, P. A. M. (1958). The principles of quantum mechanics (4th ed.). Oxford University Press.

    Google Scholar 

  5. Dvurecenskij, A. (1993). Gleason’s theorem and its applications. Mathematics and Its Applications (East European Series) (Vol. 60). Kluwer Academic Publishers Group, Ister Science Press.

    Google Scholar 

  6. Gleason, A. (1957). Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics, Indiana University Mathematics Journal, 6(4), 885–893.

    Google Scholar 

  7. Hannan, T., & Harding, J. (2016). Automorphisms of decompositions. Mathematica Slovaca, 66(2), 493–526.

    Google Scholar 

  8. Harding, J. (1996). Decompositions in quantum logic. Transactions of the American Mathematical Society, 348(5), 1839–1862.

    Article  MathSciNet  Google Scholar 

  9. Harding, J. (1998). Regularity in quantum logic. International Journal of Theoretical Physics, 37(4), 1173–1212.

    Article  MathSciNet  Google Scholar 

  10. Harding, J. (1999). Axioms of an experimental system. International Journal of Theoretical Physics, 38(6), 1643–1675.

    Article  MathSciNet  Google Scholar 

  11. Harding, J. (2001). States on orthomodular posets of decompositions. International Journal of Theoretical Physics, 40(6), 1061–1069.

    Article  MathSciNet  Google Scholar 

  12. Harding, J. (2006). Orthomodularity of decompositions in a categorical setting. International Journal of Theoretical Physics, 45(6), 1117–1127.

    Article  MathSciNet  Google Scholar 

  13. Harding, J. (2009). A link between quantum logic and categorical quantum mechanics. International Journal of Theoretical Physics, 48(3), 769–802.

    Article  MathSciNet  Google Scholar 

  14. Harding, J. (2017). Dynamics in the decompositions approach to quantum mechanics. International Journal of Theoretical Physics, 56(12), 3971–3990.

    Article  MathSciNet  Google Scholar 

  15. Harding, J. (2018). Wigner’s theorem for an infinite set. Mathematica Slovaca, 68(5), 1173–1222.

    Article  MathSciNet  Google Scholar 

  16. Kalmbach, G. (1983). Orthomodular lattices. London Mathematical Society Monographs (Vol. 18). Academic Press, Inc.

    Google Scholar 

  17. Kadison, R. V., & Ringrose, J. R. (1983). Fundamentals of the theory of operator algebras. Vol. 1: Elementary theory. Academic Press.

    Google Scholar 

  18. Mackey, G. W. (1963). The mathematical foundations of quantum mechanics. A lecture-note volume by W. A. Benjamin, Inc.

    Google Scholar 

  19. Neveu, J. (1965). Mathematical foundations of the calculus of probability. Holden-Day Inc.

    Google Scholar 

  20. Pták, P., & Pulmannová, S. (1991). Orthomodular structures as quantum logics. Fundamental Theories of Physics (Vol. 44). Kluwer Academic Publishers Group.

    Google Scholar 

  21. Prugovecki, E. (1981). Quantum mechanics in Hilbert space (2nd ed.). Academic Press.

    Google Scholar 

  22. Stone, M. (1932). On one-parameter unitary groups in Hilbert space. Annals of Mathematics, 33(3), 643–648.

    Article  MathSciNet  Google Scholar 

  23. Varadarajan, V. S. (1985). Geometry of quantum theory (2nd ed.). Springer-Verlag.

    Google Scholar 

  24. von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton University Press.

    Google Scholar 

  25. Wigner, E. P. (1959). Group theory and its applications to the quantum mechanics of the atomic spectra. Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Harding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harding, J. (2022). Decompositions in Quantum Mechanics—An Overview. In: Sriboonchitta, S., Kreinovich, V., Yamaka, W. (eds) Credible Asset Allocation, Optimal Transport Methods, and Related Topics. TES 2022. Studies in Systems, Decision and Control, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-97273-8_6

Download citation

Publish with us

Policies and ethics