Skip to main content

Classical Optical Modelling of Social Sciences in a Bohr–Kantian Framework

  • Conference paper
  • First Online:
Credible Asset Allocation, Optimal Transport Methods, and Related Topics (TES 2022)

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 429))

Included in the following conference series:

Abstract

There is a recent surge of interest in proposing quantum-like models in cognition and social sciences at large. In the current paper we attempt to contribute to that growing body of literature. We distinguish our framework from other notable works like Qbism and CBD (contextuality by default) by grounding it in the larger Bohr–Kantian philosophical and conceptual paradigm. Since our modelling techniques are motivated by the classical optical model (COM), there is a simpler geometric interpretation, with tools like Poincaré sphere representation of cognitive states and a novel Pancharatnam–Berry phase, which helps visualizing deviations from classical measure theoretic predictions of decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bohr, N. (1958). Atomic physics and human knowledge. Wiley. Reprinted as The philosophical writings of Niels Bohr (Vol. II). Ox Bow Press.

    Google Scholar 

  2. Khrennikov, A. (2010). Ubiquitous quantum structure: From psychology to finance. Springer.

    Google Scholar 

  3. Haven, E., & Khrennikov, A. (2013). Quantum social science. Cambridge University Press.

    Google Scholar 

  4. Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical Psychology, 53, 314–348.

    Article  MathSciNet  Google Scholar 

  5. Spreeuw, R. J. C. (1998). A classical analogy of entanglement. Foundations of Physics, 28, 361–374.

    Article  MathSciNet  Google Scholar 

  6. Spreeuw, R. J. C. (2001). Classical wave-optics analogy of quantum information processing. Physical Review A, 63, 062302.

    Google Scholar 

  7. Ghose, P., & Samal, M. K. (2001). EPR type nonlocality in classical electrodynamics. arXiv:quant-ph/0111119

  8. Ghose, P., & Mukherjee, A. (2014). Entanglement in classical optics. Reviews in Theoretical Science, 2, 1–14.

    Article  Google Scholar 

  9. Aiello, A., Töppel, F., Marquardt, C., Giacobino, E., & Leuchs, G. (2015). Quantum-like nonseparable structures in optical beams. New Journal of Physics, 17, 043024.

    Google Scholar 

  10. Qian, X.-F., Little, B., Howell, J. C., & Eberly, J. H. (2015). Shifting the quantum-classical boundary: Theory and experiment for statistically classical optical fields. Optica, 2(7), 611–615.

    Article  Google Scholar 

  11. Khrennikov, A. (2019). Roots of quantum computational supremacy: Superposition, entanglement, or complementarity? https://doi.org/10.20944/preprints201912.0006.v1

  12. Basieva, I., Pothos, E., Trueblood, J., Khrennikov, A., & Busemeyer, J. (2017). Quantum probability updating from zero prior (by-passing Cromwell’s rule). Journal of Mathematical Psychology, 77, 58–69.

    Google Scholar 

  13. Pancharatnam, S. (1956). Generalized theory of interference, and its applications. Part I. Coherent pencils. Proceedings of the Indian Academy of Sciences-Section A, 44(5), 247–262.

    Google Scholar 

  14. Berry, M. V. (1984). Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 392(1802), 45–57.

    MathSciNet  MATH  Google Scholar 

  15. Lüders, G. (1951). Über die Zustandsänderung durch den Meßprozeß. Annalen der Physik, 8, 322–328. https://doi.org/10.1002/andp.200610207. For an English translation: Concerning the state-change due to the measurement process. Annals of Physics (Leipzig), 15, 663–670 (2006), see quant-ph/0403007v2

  16. Khrennikov, A. (2006). A formula of total probability with interference term and the Hilbert space representation of the contextual Kolmogorovian model. arXiv:math/0609197 [math.PR].

  17. Peres, A. (1993). Quantum theory: Concepts and methods. Kluwer Academic Publishers.

    Google Scholar 

  18. Wang, Z., & Busemeyer, J. R. (2013). A quantum question order model supported by empirical tests of an a priori and precise prediction. Topics in Cognitive Sciences, 5, 689–710.

    Google Scholar 

  19. Trueblood, J. S., & Busemeyer, J. R. (2011). A quantum probability account of order effects in inference. Cognitive Science, 35, 1518–1552.

    Article  Google Scholar 

  20. Khrennikov, A., Basieva, I., Dzhafarov, E. N., & Busemeyer, J. R. (2014). Quantum models for psychological measurements: An unsolved problem. PLoS ONE.

    Google Scholar 

  21. Osherson, D. N., & Smith, E. E. (1981). On the adequacy of prototype theory as a theory of concepts. Cognition, 9, 35–58.

    Article  Google Scholar 

  22. Tversky, A., & Kahneman, D. (1983). Extension versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90(4), 293–315. https://doi.org/10.1037/0033-295X.90.4.293

    Article  Google Scholar 

  23. Aerts, D., Aerts Arguelles, J., Beltran, L., Geriente, S., Sassoli de Bianchi, M., Sozzo, S., & Veloz, T. (2019). Quantum entanglement in physical and cognitive systems: A conceptual analysis and a general representation. The European Physical Journal Plus, 134, 493.

    Article  Google Scholar 

  24. Tilma, T., Byrd, M. S., & Sudarshan, E. C. G. (2002). A parametrization of bipartite systems based on SU(4) Euler angles. Journal of Physics A: Mathematical and General, 35, 10445–10466.

    Article  MathSciNet  Google Scholar 

  25. Havel, T. F., & Doran, C. J. L. (2004). A Bloch-sphere-type model for two qubits in the geometric algebra of a 6D Euclidean vector space. In 2nd Conference on Quantum Information and Computation. Proceedings of SPIE—The International Society for Optical Engineering (Vol. 5436, pp. 93–106). arXiv:quantph/0403136

  26. Mosseri, R., & Dandoloff, R. (2001). Geometry of entangled states, Bloch spheres and Hopf fibrations. Journal of Physics A: Mathematical and General, 34, 10243–10252 (2001). arXiv:quantph/0108137

  27. Mosseri, R. (2006). Two-qubit and three-qubit geometry and Hopf fibrations. In Topology in condensed matter. Springer Series in Solid-State Sciences (Vol. 150, pp. 187–203). arXiv:quant-ph/0310053

  28. Wie, C.-R. (2014). Bloch sphere model for two-qubit pure states. arXiv:1403.8069

  29. Tsirelson, B. S. (1980). Quantum generalizations of Bell’s inequality. Letters in Mathematical Physics, 4(2), 93–100.

    Article  MathSciNet  Google Scholar 

  30. Paneru, D., Cohen, E., Fickler, R., Boyd, R. W., & Karimi, E. arXiv:1911.02201 [quant-ph] and references therein.

  31. Clauser, J. F., Horne, M. A., Shimony, A., & Holt, R. A. (1969). Physical Review Letters, 23(15), 8804.

    Article  Google Scholar 

  32. Bell, J. S. (1964). Physics, 1(3), 195–200. Reproduced as Ch. 2 of Bell, J. S. (2004). Speakable and unspeakable in quantum mechanics. Cambridge University Press.

    Google Scholar 

  33. Ghose, P., & Mukherjee, A. (2014). Advanced Science, Engineering and Medicine, 6, 246–251.

    Google Scholar 

  34. Everett, H. (1957). Reviews of Modern Physics, 29(3), 454–462.

    Article  MathSciNet  Google Scholar 

  35. Bell, J. S. (2004). Against measurement (Chap. 23). In Speakable and unspeakable in quantum mechanics. Cambridge University Press.

    Google Scholar 

  36. Mermin, N. D. (2014). Nature, 507(7493), 421–423.

    Article  Google Scholar 

  37. Khrennikov, A. (2020). Quantum versus classical entanglement: Eliminating the issue of quantum nonlocality. Foundations of Physics. https://doi.org/10.1007/s10701-020-00319-7. arXiv:1909.00267v1 [quant-ph].

  38. Khrennikov, A. (2020). Two faced Janus of quantum nonlocality. arXiv: 2001.02977v1 [quant-ph].

  39. Ramachandran, D. R., & Ramachandran, V. S. (2008). Ambiguities & perception: What uncertainty tells us about the brain. Scientific American Special Editions, 18(2s), 56–59. https://doi.org/10.1038/scientificamerican0508-56sp

  40. Yearsley, J. M. (2016). Advanced tools and concepts for quantum cognition: A tutorial. Journal of Mathematical Psychology, 78, 24–39. https://doi.org/10.1016/j.jmp.2016.07.005

    Article  MathSciNet  MATH  Google Scholar 

  41. Khrennikov, A., & Basieva, I. (2014). Possibility to agree on disagree from quantum information and decision making. Journal of Mathematical Psychology, 62–63, 1–15.

    Article  MathSciNet  Google Scholar 

  42. Aumann, R. J. (1976). Agreeing on disagree. Annals of Statistics, 4, 1236–1239.

    Article  MathSciNet  Google Scholar 

  43. Khrennikov, A. (2016). Quantum Bayesianism as the basis of general theory of decision-making. Philosophical Transactions of the Royal Society A, 374, 20150245. https://doi.org/10.1098/rsta.2015.0245

    Article  MathSciNet  MATH  Google Scholar 

  44. Khrennikova, P., & Patra, S. (2019). Asset trading under non-classical ambiguity and heterogeneous beliefs. Physica A, 521, 562–577.

    Article  MathSciNet  Google Scholar 

  45. Chatterjee, S., John, K., & Yan, A. (2012). Takeovers and divergence of investor opinion. The Review of Financial Studies, 25, 227–277.

    Article  Google Scholar 

  46. Haven, E., & Khrennikova, P. (2018). A quantum-probabilistic paradigm: Non-consequential reasoning and state dependence in investment choice. Journal of Mathematical Economics, 78(C), 186–197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patra, S., Ghose, P. (2022). Classical Optical Modelling of Social Sciences in a Bohr–Kantian Framework. In: Sriboonchitta, S., Kreinovich, V., Yamaka, W. (eds) Credible Asset Allocation, Optimal Transport Methods, and Related Topics. TES 2022. Studies in Systems, Decision and Control, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-97273-8_16

Download citation

Publish with us

Policies and ethics